Supporting Information

Atomic-Layered V₂C MXene Containing Bismuth Elements: 2D/0D and 2D/2D Nanoarchitectonics for Hydrogen Evolution and Nitrogen Reduction Reaction

Sana Akir^{*}, Jalal Azadmanjiri, Nikolas Antonatos, Lukáš Děkanovský, Pradip Kumar Roy, Vlastimil Mazánek, Roussin Lontio Fomekong, Jakub Regner, Zdeněk Sofer^{*}

Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic Email: akirs@vscht.cz , zdenek.sofer@vscht.cz

Fig. S1 EDS of (a) V_2C , (b) V_2C/BVO and (c) V_2C/Bi .

Fig. S2 (a) HRTEM of V_2C (inset SAED of V_2C), (b) SAED of V_2C/BVO and (c) the main elemental components mappings of V, O, C, and Bi of V_2C/Bi .

Fig. S3 (a) XPS survey spectra of catalysts, high-resolution XPS spectra of Bi 4f in (b) V_2C/BVO , and (c) V_2C/Bi .

Fig. S4 Nitrogen adsorption-desorption isotherms of V₂C, V₂C/BVO, and V₂C/Bi, inset pore volume of catalysts.

Fig. S5 Extended linear Tafel plots to determine the exchange current density of catalysts.

Fig. S6 Cyclic voltammograms obtained from the non-Faradic Region of (a) V_2C , (b) V_2C/BVO and (c) V_2C/Bi at different scan rates in H_2SO_4 (0.5M).

Fig. S7 (a) Linear sweep voltammetry (LSV) measurements of V₂C/BVO in 1M KOH, 1 M Na₂SO₄ and 0.5 M H₂SO₄, (b) SEM image of V₂C/BVO and (c) EDS elemental mapping of V₂C/BVO after stability test, (d) XPS survey spectra of V₂C/BVO after HER stability, High-resolution XPS spectra of V₂C/BVO after HER stability: (e) V2p, (f) C1s, and (g) Bi4f, (h) The Nyquist plots of V₂C/BVO before and after stability.

Fig. S8 Photograph of H-type electrochemical cell.

Fig S9 (a) Three consecutive CV scans of V_2C/Bi in 0.1 M KOH under N_2 , Chronoamperometry curves of diverse applied potentials for (b) V_2C/Bi , (c) V_2C/BVO and (d) V_2C .

Fig. 10 (a) Chronoamperometry curves of V₂C/Bi under different electrochemical conditions, (b) Ammonia yield and corresponding FE after 2h NRR under different conditions (c) images of a solution derived from an electrolyte before and after NRR test using N₂ and Ar as feeding gas on the V₂C/Bi electrode detected using the NH₃ color reagent, (d) UV-Vis curves of indophenol assays after incubated for 2 hours, (e) calibration curve used for estimation of NH₃ concentration. The absorbance at 655 nm was measured by UV-Vis spectrophotometer, and the fitting curve shows good linear relation of absorbance with NH₃ concentration.

Fig. S11 (a, b, c) SEM images of V₂C/Bi after the 24 h stability test and (d) the corresponding EDS element mapping, (e) The Nyquist plots of V₂C/Bi before and after stability, High-resolution XPS spectra of V₂C/Bi after NRR stability: (f) V2p, (g) C 1s, and (h) Bi 4f.

Fig. S12 Schematic of electron transfer between Bi and V_2C and adsorption sites of N_2 .

Elements	V	С	0	F	Bi
Atomic percent	17.36	37.5	26.3	18.5	-
V ₂ C					
Atomic percent	11.8	24.4	43.6	8	11.2
V ₂ C/BVO					
Atomic percent	11.54	26.8	43.77	11.3	6.8
V ₂ C/Bi					

 Table S1 Elements detected from XPS measurement.

Table S2 comparison of η_{10} values with other non-noble metal catalysts.

Catalysts	Overpotentials	References	
	(mV)		
V ₂ C/BVO	384	This work	
Se/Ti ₃ C ₂	712	2D Mater. 9 (2022) 045019	
Te / Ti ₃ C ₂	690	Nanoscale, 15 (2023) 4033–4044	
S/ Ti ₃ C ₂	830		
Ni NPs@N-Nb ₂ CT _x	720	Small 19 (2023) 2206098	
MoS ₂ /Ti ₃ C ₂	400	Int. J. Hydrogen Energy 44 (2019) 965-	
		976	
Nb ₄ C ₃ T _x -180	398	Int. J. Hydrogen Energy 46 (2021) 1955-	
		1966	
CoMoP@C	448	Energy Environ. Sci. 10 (2017) 788	
VS ₂ nanoflowers	400	Int. J. Hydrogen Energy 43 (2018) 22949-	
		22954	
Ti ₃ C ₂ flakes	385	ACS Sustainable Chem. Eng. 6 (2018)	
		8976-8982	
Bi _{1.85} Sr ₂ Co _{1.85} O _{7.7-δ}	589	ChemPhysChem 16 (2015) 769-774	
V ₂ CT _x	618	Appl. Surf. Sci. 582 (2022) 152481	
VSe ₂	414	ACS Appl. Energy Mater. (2019)	
		644–653	

Table S3 Comparison of the electrocatalytic NRR performance of V_2C/Bi with other NRR aqueous-based NRR electrocatalysts at ambient conditions.

Catalyst	Electrolyte	NH ₃ yield	FE (%)	Ref.
V ₂ C/Bi	0.1 M	88.6µg h ⁻¹ cm ⁻²	8	This work
	КОН			
Ni/Nb ₂ C	0.1 M	26.16 μg h ⁻¹ cm ⁻²	7.3	Ceram. Int. 2022, 48, 20599
	КОН			
Cu/Ti ₃ C ₂	0.1 M	$3.04 \ \mu mol \ h^{-1} \ cm^{-2}$	7.31	ChemPlusChem 2021, 86, 166
	КОН			
Ti ₃ C ₂ T _x	0.01 M	2.81× 10 ⁻⁵ μmol·s -	7.4	Nano Converg. 2021, 8, 14
	Na ₂ SO ₄	$1 \cdot \text{cm}^{-2}$		
NS-Ti ₃ C ₂ T _x	0.05 M	34.23 μ g h ⁻¹ mg ⁻¹ _{cat}	6.6	J. Alloys Comp. 2021, 869,
	H ₂ SO ₄			159335
V ₂ CT _x	0.1 M	$12.6 \ \mu g \ h^{-1} \ cm^{-2}$	4	Catal. Lett. 2021, 151, 3516
	Na ₂ SO ₄			
TiO ₂ /Ti ₃ C ₂ T _x	0.1M HCl	$26.32 \ \mu g \ h^{-1} \ m g^{-1}_{cat}$	8.42	Inorg. Chem. 2019, 58, 5414
VCT		25.1	11.7	0.4.1 1.4 2021 151 251(
V ₂ C1 _x	0.1M HCl	$23.1 \ \mu g h^{+} m g^{+}_{cat}$	11./	Catal. Lett. 2021, 151, 3516

Ti ₃ C ₂ T _x	0.1 M	$20.4 \ \mu g \ h^{-1} \ mg^{-1}_{cat}$	9.3	J. Mater. Chem. A, 2018, 6, 24031
	H_2SO_4			
MnO ₂ /Ti ₃ C ₂ T _x	0.1 M HCl	$34.12 \ \mu g \ h^{-1} \ cm^{-2}$	11.39	Mater. Chem. A, 2019, 7,
				18823
Ti ₃ C ₂ T _x	0.5 M	$0.26 \ \mu g \ h^{-1} \ cm^{-2}$	5.78	Joule 2019, 3, 279
/FeOOH	Li ₂ SO ₄			
Mn ₃ O ₄ /Ti ₃ C ₂ T _x	0.1 M	$25.95 \ \mu g \ h^{-1} \ cm^{-2}$	5.51	Chem. Eng. J., 2020, 396
	Na ₂ SO ₄			
$RuFe@Ti_3C_2T_x$	0.1 M	$40.79 \ \mu g \ h^{-1} \ cm^{-2}$	15.25	ChemCatChem 2022, 14,
	КОН			e202101775