Supporting Information

Moderate intensity ligand works best: a theoretical study on passivation effects of pyridine-based molecules for perovskite solar cells

Na Chen, Weiyi Zhang, Quan-Song Li*

Key Laboratory of Cluster Science of Ministry of Education

Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials

School of Chemistry and Chemical Engineering

Beijing Institute of Technology, 100081 Beijing, China

E-mail: liquansong@bit.edu.cn

Supporting Information Contents

Figure S1. The adsorption configuration of H ₂ O@MAPbI ₃ SI 3
Figure S2. Structure of Tpy-1S, adsorption configuration, band structure and PDOS
for Tpy-1S@MAPbI ₃ SI 4
Figure S3. Charge densities of VBM and CBMSI 5
Figure S4. Initial AIMD configuration for H ₂ O-PMs@ MAPbI ₃ SI 6
Figure S5. Time evolution of the energy fluctuations for H ₂ O-PMs@MAPbI ₃ SI 7
Figure S6. Snapshots of AIMD simulation for H ₂ O-Py@MAPbI ₃ and H ₂ O-
Bpy@MAPbI ₃ SI 8

Figure S1. The adsorption configuration of $H_2O@MAPbI_3$.

Figure S2. (a) Structure of Tpy-1S, (b) optimized adsorption configuration and (c) band structure and projected density of states (PDOS) for Tpy-1S@MAPbI₃.

Figure S3. Charge densities of VBM and CBM for (a) bare MAPbI₃, (b) Py@MAPbI₃, (c) Bpy@MAPbI₃, and (d) Tpy@MAPbI₃, respectively. The isosurface level is 0.0008 e/Bohr³.

Figure S4. Initial AIMD configurations for H₂O-PMs@MAPbI₃.

Figure S5. Time evolution of the energy fluctuations for H_2O -PMs@MAPbI_3.

Figure S6. Snapshots of AIMD simulation at 0, 5, 10, 15, and 20 ps for (a) H₂O-Py@MAPbI₃, and (b)H₂O-Bpy@MAPbI₃ systems at 300 K.