One-pot Approach to Prepare Stretchable and Conductive Regenerated Silk Fibroin/CNT Films as Multifunctional Sensors

Qiujie Meng^{a,b}, Lunyu Zhao^{a,b}, Yu Geng^{a,b}, Pengxiang Yin^{a,b}, Zhiping Mao^{b,c}, Xiaofeng Sui^a, Meixin Zhao^d, Edmondo M. Benetti^e, Xueling Feng^{a,b,c,}*

^a Key Lab of Science and Technology of Eco-textile, Ministry of Education, College of

Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China

^b Shanghai Frontier Science Research Center for Modern Textiles, Donghua

University, Shanghai 201620, China

^c National Manufacturing Innovation Center of Advanced Dyeing and Finishing

Technology, Tai'an, Shandong 271000, China

^d Department of Nuclear Medicine, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China

^e Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131,

Padova, Italy

*Corresponding author:

E-mail: xlfeng@dhu.edu.cn (Xueling Feng)

Address: No. 2999 North Renmin Road, Shanghai 201620, People's Republic of China.

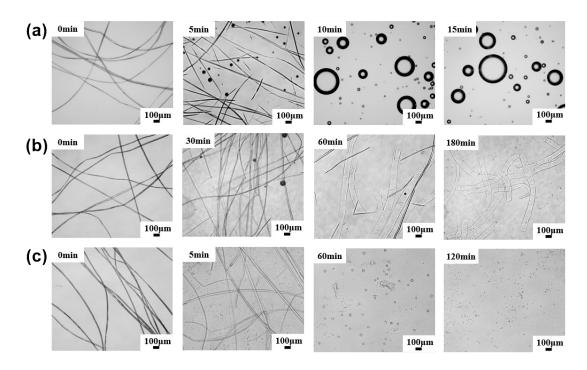


Figure S1. The dissolution process of silk fibroin. (a) aq. PA (85 wt%), 25°C. (b) aq.

LiBr, 60°C. (c) aq. CaCl₂/CH₃CH₂OH/H₂O, 80°C.

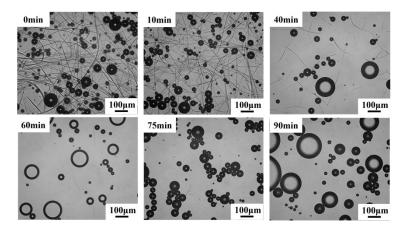


Figure S2. The dissolution process of silk fibroin in 75 wt% H_3PO_4 , at 25°C. Ultra-stable SF/CNT/PA solution

Figure S3. Optical micrographs of a H₃PO₄/CNT/SF solution after 5 months since the

preparation.

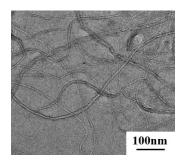


Figure S4. TEM image for SF/CNT showing the CNTs modified by SF was

homogeneously dispersed.

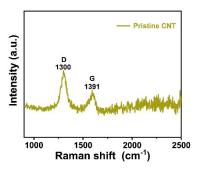


Figure S5. Raman spectrum of pristine CNT.

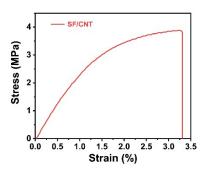
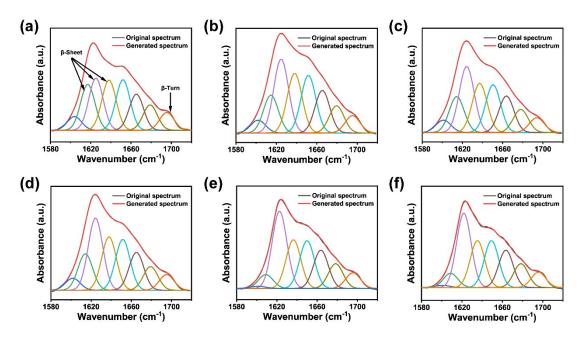
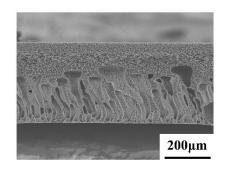
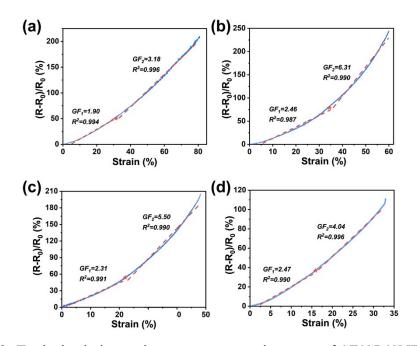
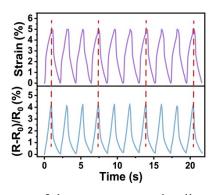



Figure S6. The tensile stress-train curves of the neat SF/CNT-1.

Figure S7. FTIR spectra of SF/GL films and SF/GL/CNT films. (a) Deconvolution of amide I band in FTIR spectra of SF/GL films. (b) Deconvolution of amide I band in FTIR spectra of SF/GL/CNT-1 films. (C) Deconvolution of amide I band in FTIR spectra of SF/GL/CNT-3 films. (d) Deconvolution of amide I band in FTIR spectra of SF/GL/CNT-5 films. (e) Deconvolution of amide I band in FTIR spectra of SF/GL/CNT-7 films. (f) Deconvolution of amide I band in FTIR spectra of SF/GL/CNT-9 films.

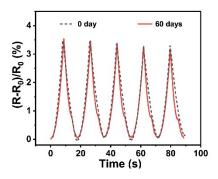

Figure S8. The SEM images of SF/GL films.

Figure S9. Typical relative resistance versus strain curve of SF/GL/CNT films with varying CNT content at a stretching rate of 10 mm min⁻¹. (a) SF/GL/CNT-1. (b) SF/GL/CNT-5. (c) SF/GL/CNT-7. (d) SF/GL/CNT-9.

Figure S10. Dynamic response of the sensor to ten loading and unloading cycles at 5 % strain, indicating the negligible signal hysteresis.

Figure S11. The relative resistance change vs time during the loading-unloading cycles at a strain of 3% for the initial SF/GL/CNT-3 sensor and the sensor after placing 60 days.

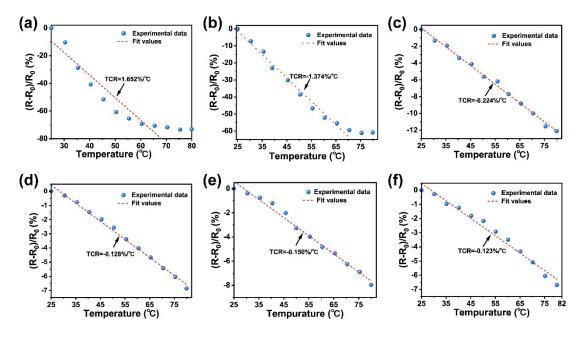


Figure S12. Normalized relative resistance changes of SF/GL/CNT sensosrs upon

increasing temperature from 25 to 80 °C. (a) SF/GL/CNT-0.1 films. (b) SF/GL/CNT-1 films. (c) SF/GL/CNT-3 films. (d) SF/GL/CNT-5 films. (e) SF/GL/CNT-7 films. (f) SF/GL/CNT-9 films.

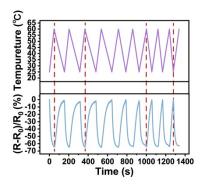


Figure S13. Dynamic response of the sensor to hot (60 °C) and cold (25 °C) environment, indicating the negligible signal hysteresis.

Table S1. The D, G, and I_D/I_G of the SF/GL/CNT sensor	rs with varying CNTs content.

Sample	D (cm ⁻¹)	G (cm ⁻¹)	I _D /I _G
SF/GL/CNT-1	1306	1597	1.82
SF/GL/CNT-3	1310	1605	2.07
SF/GL/CNT-5	1311	1606	2.18
SF/GL/CNT-7	1314	1608	2.31
SF/GL/CNT-9	1315	1610	2.37

Table S2. Characterization of the β -Sheet content and crystallinity of SF/GL films

and SF/GL/CNT films with FTIR spectra and XRD.

Sample	β-Sheet (%)	β-crystallinity (%)
SF/GL	35.3	14.06
SF/GL/CNT-1	37.1	15.37
SF/GL/CNT-3	39.6	17.80
SF/GL/CNT-5	43.4	20.66
SF/GL/CNT-7	46.1	22.67
SF/GL/CNT-9	33.7	13.61

Sensing materials	TCR (%/°C)	Sensing ranges (°C)	Ref.
Pt NFs into silk fibroin membranes	0.205	20-60	51
Silk CFM	0.81	20-80	61
Gr/SF/Ca ²⁺	2.09	20-50	16
SS-PEDOT:PSS/rGO	0.99	20-50	59
Graphene-doped PU	0.815	20-100	58
PEDOT-TPU	0.95	20-40	60
BP/LEG on SEBS	0.1736	25-50	57
GO/polyurethane	0.80	30-80	56
SF/GL/CNT	1.6	25-80	This wor

 Table S3. Summary of thermosensation capacities of temperature sensors