Supplementary Information

Spinodal Decomposition Introduces Strain-Enhanced Thermochromism in Polycrystalline V_{1-x}Ti_xO₂ Thin Films

Alexander Belenchuk,^a Oleg Shapoval,^a Vladimir Roddatis,^{b‡} Karen Stroh,^c Sergiu Vatavu,^a

Jonas Wawra,^{c§} and Vasily Moshnyaga^c

^a Physics of Semiconductors & Devices Lab, Faculty of Physics and Engineering, Moldova State University, 60A Mateevici str., MD-2009 Chişinău, Republic of Moldova. E-mail: alexandr.belenciuc@usm.md

^bInstitut für Materialphysik, Georg-August-Universität-Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany.

^CErstes Physikalisches Institut, Georg-August-Universität-Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany. Email: vmosnea@gwdg.de

[‡]Present address: GFZ German Research Centre for Geosciences, Telegrafenberg D-14473 Potsdam, Germany. [§]Present address: IFW Dresden, Helmholtzstraße 20, 01069 Dresden, Germany.

Figure S1 Characterization of TiO_2 films grown on fused quartz substrates under growth conditions optimized for pure-phase VO₂ synthesis. (a) AFM images of the TiO₂ surface. (b) XRR oscillations for TiO₂ film with a thickness of 34 nm. (c) XRD pattern of the TiO₂ film shown in (b).

Figure S2 EDX spectrum of the 180-nm-thick $V_{1-x}Ti_xO_2$ film grown on a fused quartz substrate with a calculated metal composition corresponding to x=0.34.

Figure S3 XRD patterns of $V_{0.65}Ti_{0.35}O_2$ film grown on fused quartz substrate before and after annealing at 530 °C for 1 hour.