Supporting Information

A novel catalyst derived from Co-ZIFs to grow N-doped Carbon nanotubes for all-solid-state supercapacitors with high performance

Yunlong Qi, Tian Lv*, Zilin Chen, Yu Duan, Xiao Li, Weiyang Tang, Quanhu Sun,

Dongmei Zhai, Tao Chen*

Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical

Science and Engineering, Tongji University, Shanghai 200092, China

^{*} Corresponding author.

E-mail address: 18012@tongji.edu.cn (T. Lv), tchen@tongji.edu.cn (T. Chen)

Fig. S1. FESEM images of MF with different magnifications.

Fig. S2. Digital photographs of MF and CF from different views.

Fig. S3. FESEM images of ZIFs/CF hybrid with different magnifications.

Fig. S4. EDX mapping of Co-ZIFs/CF hybrid.

Fig. S5. FESEM images of CNTs/CF hybrids with different ratio of H₂ and C₂H₄. (a, b) 2:1 and (c, d) 1:1.

Fig. S6. (a) N₂ adsorption-desorption isotherm at 77 K and (b) pore size distribution of CNTs/CF hybrids with different ratio of H_2 and C_2H_4 .

Table	S 1	Main	Structural	Properties	Calculated	from	N_2	Adsorption-Desorption
Analys	sis o	f CNTs	s/CF hybrid	ls with diffe	rent ratio of	H_2 and	$d C_2$	H ₄ .

Sample	$S_{bet} (m^2/g)$	Pore volume (cm ³ /g)	Pore Size (nm)
3:1	141.1	0.208	9.97
2:1	122.4	0.189	9.70
1:1	94.7	0.135	12.51

Fig. S7. (a) XPS and high-resolution (b) C 1s, (c) Co 2p and (d) N 1s of Co-ZIFs/CF hybrid.

Fig. S8. (a) N₂ adsorption-desorption isotherm at 77 K and (b) pore size distribution of CNTs/CF hybrids with different growth time.

Table S2 Main Structural Properties Calculated from N_2 Adsorption-DesorptionAnalysis of CNTs/CF hybrids with different growth time.

Sample	$S_{bet} (m^2/g)$	Pore volume (cm ³ /g)	Pore Size (nm)
15 min	141.1	0.208	9.97
30 min	111.6	0.148	9.77
45 min	66.3	0.117	11.59
60 min	102.1	0.150	9.63

Fig. S9. (a) CV curves (at 20 mV/s) and (b) GCD curves (at a current density of 0.5 mA/cm^2) of the supercapacitors based on CF, Co-ZIFs/CF and CNTs/CF.

Fig. S10. (a) CV curves (at 20, 30, 50, 80 and 100 mV/s) and (b) GCD curves (at a current density of 0.2, 0.3, 0.5, 0.8 and 1.0 mA/cm²) of the supercapacitor based on $MnO_2/CNTs/CF$ hybrid with the MnO_2 deposition time for 35 min.

Fig. S11. Dependence of the specific capacitances of the supercapacitor based on $MnO_2/CNTs/CF$ hybrid with different deposition time of MnO_2 at a charge-discharge current of 0.5 mA/cm².