Supporting Information

A novel catalyst derived from Co-ZIFs to grow N-doped

Carbon nanotubes for all-solid-state supercapacitors with

 high performanceYunlong Qi, Tian Lv*, Zilin Chen, Yu Duan, Xiao Li, Weiyang Tang, Quanhu Sun, Dongmei Zhai, Tao Chen*

Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical

Science and Engineering, Tongji University, Shanghai 200092, China

* Corresponding author.

E-mail address: 18012@tongji.edu.cn (T. Lv), tchen@tongji.edu.cn (T. Chen)

Fig. S1. FESEM images of MF with different magnifications.

Fig. S2. Digital photographs of MF and CF from different views.

Fig. S3. FESEM images of ZIFs/CF hybrid with different magnifications.

Fig. S4. EDX mapping of Co-ZIFs/CF hybrid.

Fig. S5. FESEM images of CNTs/CF hybrids with different ratio of H_{2} and $\mathrm{C}_{2} \mathrm{H}_{4}$. (a,
b) $2: 1$ and (c, d) $1: 1$.

Fig. S6. (a) N_{2} adsorption-desorption isotherm at 77 K and (b) pore size distribution of
CNTs/CF hybrids with different ratio of H_{2} and $\mathrm{C}_{2} \mathrm{H}_{4}$.

Table S1 Main Structural Properties Calculated from N_{2} Adsorption-Desorption Analysis of CNTs/CF hybrids with different ratio of H_{2} and $\mathrm{C}_{2} \mathrm{H}_{4}$.

Sample	$\mathrm{S}_{\text {bet }}\left(\mathrm{m}^{2} / \mathrm{g}\right)$	Pore volume $\left(\mathrm{cm}^{3} / \mathrm{g}\right)$	Pore Size (nm)
$3: 1$	141.1	0.208	9.97
$2: 1$	122.4	0.189	9.70
$1: 1$	94.7	0.135	12.51

Fig. S7. (a) XPS and high-resolution (b) C 1s, (c) Co 2p and (d) N 1s of Co-ZIFs/CF hybrid.

Fig. S8. (a) N_{2} adsorption-desorption isotherm at 77 K and (b) pore size distribution of
CNTs/CF hybrids with different growth time.

Table S2 Main Structural Properties Calculated from N_{2} Adsorption-Desorption Analysis of CNTs/CF hybrids with different growth time.

Sample	$\mathrm{S}_{\text {bet }}\left(\mathrm{m}^{2} / \mathrm{g}\right)$	Pore volume $\left(\mathrm{cm}^{3} / \mathrm{g}\right)$	Pore Size (nm)
15 min	141.1	0.208	9.97
30 min	111.6	0.148	9.77
45 min	66.3	0.117	11.59
60 min	102.1	0.150	9.63

Fig. S9. (a) CV curves (at $20 \mathrm{mV} / \mathrm{s}$) and (b) GCD curves (at a current density of 0.5 $\mathrm{mA} / \mathrm{cm}^{2}$) of the supercapacitors based on CF, Co-ZIFs/CF and CNTs/CF.

Fig. S10. (a) CV curves (at 20, 30, 50, 80 and $100 \mathrm{mV} / \mathrm{s}$) and (b) GCD curves (at a current density of $0.2,0.3,0.5,0.8$ and $1.0 \mathrm{~mA} / \mathrm{cm}^{2}$) of the supercapacitor based on $\mathrm{MnO}_{2} / \mathrm{CNTs} / \mathrm{CF}$ hybrid with the MnO_{2} deposition time for 35 min .

Fig. S11. Dependence of the specific capacitances of the supercapacitor based on $\mathrm{MnO}_{2} / \mathrm{CNTs} / \mathrm{CF}$ hybrid with different deposition time of MnO_{2} at a charge-discharge current of $0.5 \mathrm{~mA} / \mathrm{cm}^{2}$.

