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Method
Support Vector Regression

The SVR model represents instances as points in space, with the
examples of different categories separated by a large gap. The SVR
training algorithm creates a model that assigns new instances to one of two
categories, making it a non-probabilistic binary linear classifier, based on
a series of training examples that are individually labeled as belonging to
one of two categories. New instances are then mapped into the same area
and assigned to one of the categories based on which side of the gap they
fall on. SVR can perform both linear and non-linear regression by utilizing
the kernel trick, which involves implicitly transforming inputs into high-
dimensional feature spaces.[1]
Gradient boosting decision tree

GBDT model is a powerful tool for optimizing arbitrary differentiable
loss functions. It works by constructing an additive model in a forward
stage-wise fashion, where in each stage a regression tree is fit on the
negative gradient of the given loss function. The boosting tree model was
optimized using an additive model and a forward stagewise algorithm.
During training, the negative gradient of the loss function was used to fit
the approximate value of the loss in each iteration, resulting in a continuous
reduction of the error term generated in the training process [2,3].

K-nearest neighbor



KNN model has been demonstrated to be effective in cases where the
data labels are continuous rather than discrete variables. This method
utilizes an unsupervised learner to identify the nearest neighbors of a query
point, and then assigns a label to the query point based on the mean of the

labels of its nearest neighbors.[4]
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Fig. S1. (a) The periodic table outlining H adsorbate elements and the 37 metals
included in the dataset. Structure models and enumerated adsorption sites: (b) A3;B
alloy, (c) AB alloy. The A and B atoms are represented dark green and brown sphere.

The top, bridge, and hollow sites are shown in red, white, and green, respectively.
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Fig. S2. The violins distribution represents three adsorption site features.
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Fig. S3. Comparison of the R* score and the RMSE for six ML models on (a) the train

set and (b) the test set.
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Fig. S4. Box plots of AGy+ distributions for different ranges of the space group.

Table S1 Detailed parameters of eleven ML models.

ML model name Parameters
Degree: 3
SVR C: 1e3

Gamma: scale

N_neighbors: 10
KNN Weights: uniform
Leaf size: 45

N_estimators: 1000
Num_leaves: 15
LGB Max_depth: -1
Subsample: 0.6

Random state: 2022

N_estimators: 500
RF Max_depth: 8
Random state: 2022

Max_depth: 7
Min_samples_leaf: 8

GBDT N_estimators: 600
Random state: 2022
Colsample bytree: 0.9

<GB Max_depth: 5

N_estimators: 700
Objective: ‘reg: squarederror’




Random state: 2022

Table S2 Dataset for HER alloy materials.

Number Formula Site information AGy+ (V)
1 Pt;Ti bridge AA|B -0.052
12 Sc;Cu top B 0.095
8856 MnRu hollow AAB|FCC 0.026

Table S3 Calculation methods of element features in compounds. The
the element number of alloys. The “t” represents the property of element. The “p
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represents the weighted score. In the calculation of the weight entropy of mixing
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Features description

Computational formula

The average
Weighted mean
Geometric mean

Weighted geometric mean

The entropy of mixing
Weighted entropy of mixing

Extreme value range
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The standard deviation
Weighted standard deviation
The maximum
The minimum value
The mode

Element species number
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Table S4 The explication and LabelEncoder method for adsorption site features in the



dataset.

Num  Site Site feature description LabelEn LabelEn LabelEn
name coder S; coder S, coder S;
1 top|A The top site of atom A 3 1 0
2 top|B The top site of atom B 3 8 0
3 bridge The bridge site between atom 2 2 1
AAJA A and atom A, and near the
atom A
4 bridge The bridge site between atom 2 3 2
ABB A and atom A, and near the
atom B
5 bridge The bridge site between atom 2 3 1
ABJA A and atom B, and near the
atom A
6 bridge The bridge site between atom 2 9 2
BB/B B and atom B, and near the
atom B
7 hollo  The hollow site between two 1 5 3
w atom A and one atom B, and
AAB| there are no atoms directly
FCC below the hollow site
8 hollo  The hollow site between two 1 5 4
W atom A and one atom B, and
AAB]| there are atoms directly
HCP below the hollow site
9 hollo  The hollow site between three 1 4 3
W atoms A, and there is atom
AAA| directly below it
FCC
10 hollo  The hollow site between three 1 4 4
W atoms A, and there is atom
AAA] directly below it
HCP
11 4fold The hollow between four 4 0 0

atoms

Table S5 The S, feature coded by LabelEncoder method.

S, site types

LabelEncoder number

hollow
bridge
top
4fold

hollow-tilt

top-tilt
bridge-tilt

1

NN N AW

Table S6 The S, feature coded by LabelEncoder method.



S, site types LabelEncoder number

A 1
AA 2
AB 3
AAA 4
AAB 5
ABB 6
AABB 7
B 8
BB 9
Table S7 The S; feature coded by LabelEncoder method.
S; site types LabelEncoder number
A 1
B 2
FCC 3
HCP 4
Table S8 The explication of 20 features in SHAP value plot.
Num  Feature name Feature description
| M Mean column: mean of group number of elements in the
¢ composition
2 S, Site02: the position of atoms around the adsorption site
3 M Mean melting point: mean of melting point of elements in
P the composition
4 Sy Site01: the position information of the adsorption site
5 M, Mean NdUnfilled: mean of number of unfilled d-orbitals
among elements in the composition
6 M Mean Nunfilled: mean of number of unfilled valence
N orbitals among elements in the composition
- s, Site03: the atoms position of adsorbed substance H
around the adsorption site
g D, Std_dev heat of formation: standard deviation of heat
formation among elements in the composition
9 M Mean covalent radius: mean of covalent radius among
' elements in the composition
10 M Mean ndvalence: mean of number of valence d-orbitals
Y among elements in the composition
1 M Mean electronegativity: mean of electronegativity among
¢ elements in the composition
12 E, Entropy heat of formation: weighted entropy of heat

formation among elements in the composition
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Std_dev lattice constant: standard deviation of lattice

constant among elements in the composition

Entropy metallic radius: weighted entropy of metallic

radius among elements in the composition

Mean thermal conductivity: mean of thermal conductivity

among elements in the composition

Mean Mendeleev number: mean of Mendeleev number

among elements in the composition

Entropy atomic volume: weighted entropy of atomic

volume among elements in the composition

Entropy fusion heat: weighted entropy of fusion heat

among elements in the composition

Mean atomic weight: mean of atomic weight among

elements in the composition

Avg_dev electronegativity: average deviation of

electronegativity among elements in the composition

Table S9 Comparison of experimentally measured """ with the values predicted by

LGB model with three HER alloy electrocatalysts in the dataset.

HER o
Alloy ?VF)T " ML predicted " (V) i’;‘;‘;‘::;’:}t,ﬂy(v)
CoNi 0.075 0.083 0.098 [5]
PtRu 0.146 0.131 0.113 [6]
RuCo 0.017 0.016 0.010 [7]
FeNi 0.124 0.126 0.126 [8]

Table S10 The AGy+ values of fourteen alloys from MP database using ML model

prediction and the DFT calculation.

Num  Mp-id Formu ML-AGy: DFT-AGy. ML-THER  DFT- Site
la (eV) (eV) \%) NHER
(V)

1 mp-437 MgAu  -0.095 0.081 0.095 0.081 bridge
2 mp-721 TbCd  -0.021 0.013 0.021 0.013 bridge
3 mp-1172 MgRh  -0.105 0.020 0.105 0.020 bridge
4 mp-1857 YbCd  -0.043 0.016 0.043 0.016 bridge
5 mp-2165 SmZn  -0.038 0.020 0.038 0.020 bridge
6 mp-2525 PrAg  -0.041 0.050 0.041 0.050 top

7 mp-2724 TbSb  0.042 0.051 0.042 0.051 bridge
8 mp-7576 CrSi -0.037 0.050 0.037 0.050 bridge
9 mp-11256  ScAu  0.038 0.036 0.038 0.036 top
10 mp-12793  NdAl  -0.077 -0.024 0.077 0.024 bridge




11 mp-20582 Laln -0.047 0.019 0.047 0.019 bridge

12 mp-574283  GdTe -0.040 0.097 0.040 0.097 bridge
13 mp-998985  TiAu -0.048 0.012 0.048 0.012 top
14 mp- SiTc 0.033 0.047 0.033 0.047 top
1079910
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