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Method

Support Vector Regression

The SVR model represents instances as points in space, with the 

examples of different categories separated by a large gap. The SVR 

training algorithm creates a model that assigns new instances to one of two 

categories, making it a non-probabilistic binary linear classifier, based on 

a series of training examples that are individually labeled as belonging to 

one of two categories. New instances are then mapped into the same area 

and assigned to one of the categories based on which side of the gap they 

fall on. SVR can perform both linear and non-linear regression by utilizing 

the kernel trick, which involves implicitly transforming inputs into high-

dimensional feature spaces.[1]

Gradient boosting decision tree

GBDT model is a powerful tool for optimizing arbitrary differentiable 

loss functions. It works by constructing an additive model in a forward 

stage-wise fashion, where in each stage a regression tree is fit on the 

negative gradient of the given loss function. The boosting tree model was 

optimized using an additive model and a forward stagewise algorithm. 

During training, the negative gradient of the loss function was used to fit 

the approximate value of the loss in each iteration, resulting in a continuous 

reduction of the error term generated in the training process [2,3].

K-nearest neighbor



KNN model has been demonstrated to be effective in cases where the 

data labels are continuous rather than discrete variables. This method 

utilizes an unsupervised learner to identify the nearest neighbors of a query 

point, and then assigns a label to the query point based on the mean of the 

labels of its nearest neighbors.[4]

Fig. S1. (a) The periodic table outlining H adsorbate elements and the 37 metals 

included in the dataset. Structure models and enumerated adsorption sites: (b) A3B 

alloy, (c) AB alloy. The A and B atoms are represented dark green and brown sphere. 

The top, bridge, and hollow sites are shown in red, white, and green, respectively.



Fig. S2. The violins distribution represents three adsorption site features.

Fig. S3. Comparison of the R2 score and the RMSE for six ML models on (a) the train 

set and (b) the test set.



Fig. S4. Box plots of ΔGH* distributions for different ranges of the space group.

Table S1 Detailed parameters of eleven ML models.

ML model name Parameters

SVR
Degree: 3

C: 1e3
Gamma: scale

KNN
N_neighbors: 10
Weights: uniform

Leaf_size: 45

LGB

N_estimators: 1000
Num_leaves: 15
Max_depth: -1
Subsample: 0.6

Random_state: 2022

RF
N_estimators: 500

Max_depth: 8
Random_state: 2022

GBDT

Max_depth: 7
Min_samples_leaf: 8

N_estimators: 600
Random_state: 2022

XGB

Colsample_bytree: 0.9
Max_depth: 5

N_estimators: 700
Objective: ‘reg: squarederror’



Random_state: 2022

Table S2 Dataset for HER alloy materials.

Number Formula Site information ΔGH* (eV)
1 Pt3Ti bridge AA|B -0.052
12 Sc3Cu top B 0.095
… … … …

8856 MnRu hollow AAB|FCC 0.026

Table S3 Calculation methods of element features in compounds. The “i” represents 
the element number of alloys. The “t” represents the property of element. The “p” 
represents the weighted score. In the calculation of the weight entropy of mixing 

. 𝜔 = 𝑡𝑖/(𝑡1 + … + 𝑡𝑖)

Features description Computational formula

The average = 𝜇 = (𝑡1 + … + 𝑡𝑖)/𝑖

Weighted mean = 𝜈 = (𝑝1 × 𝑡1) + … + (𝑝𝑖 × 𝑡𝑖)

Geometric mean = (𝑡1 × … × 𝑡𝑖)
1/𝑖

Weighted geometric mean = (𝑡1)𝑝1 × … × (𝑡𝑖)
𝑝𝑖

The entropy of mixing =‒ 𝜔1𝐼𝑛(𝜔1) ‒ … ‒ 𝜔𝑖𝐼𝑛(𝜔𝑖)

Weighted entropy of mixing =‒
𝑝1𝜔1

𝑝1𝜔1 + … + 𝑝𝑖𝜔𝑖
𝐼𝑛( 𝑝1𝜔1

𝑝1𝜔1 + … + 𝑝𝑖𝜔𝑖
)… ‒

𝑝𝑖𝜔𝑖

𝑝1𝜔1 + … + 𝑝𝑖𝜔𝑖
𝐼𝑛(

𝑝𝑖𝜔𝑖

𝑝1𝜔1 + … + 𝑝𝑖𝜔𝑖
)

Extreme value range = 𝑡1 ‒ 𝑡2 (𝑡1 > 𝑡2)

Weighted range = 𝑝1𝑡1 ‒ 𝑝2𝑡2

The standard deviation = [(1/2)((𝑡1 ‒ 𝜇)2 + (𝑡2 ‒ 𝜇)2)]1/2

Weighted standard deviation = [𝑝1(𝑡1 ‒ 𝜈)2 + 𝑝2(𝑡2 ‒ 𝜈)2]1/2

The maximum = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 (𝑡1,𝑡2)

The minimum value = 𝑀𝑖𝑛𝑖𝑚𝑢𝑚 (𝑡1,𝑡2)

The mode = 𝑀𝑜𝑑𝑒 (𝑐𝑜𝑢𝑛𝑡(𝑡1,𝑡2))

Element species number = 𝑈𝑛𝑖𝑞𝑢𝑒 ([𝑡1,𝑡2])

Table S4 The explication and LabelEncoder method for adsorption site features in the 



dataset.

Num Site 
name

Site feature description LabelEn
coder S1

LabelEn
coder S2

LabelEn
coder S3

1 top|A The top site of atom A 3 1 0
2 top|B The top site of atom B 3 8 0
3 bridge 

AA|A
The bridge site between atom 
A and atom A, and near the 

atom A

2 2 1

4 bridge 
AB|B

The bridge site between atom 
A and atom A, and near the 

atom B

2 3 2

5 bridge 
AB|A

The bridge site between atom 
A and atom B, and near the 

atom A

2 3 1

6 bridge 
BB|B

The bridge site between atom 
B and atom B, and near the 

atom B

2 9 2

7 hollo
w 

AAB|
FCC

The hollow site between two 
atom A and one atom B, and 
there are no atoms directly 

below the hollow site

1 5 3

8 hollo
w 

AAB|
HCP

The hollow site between two 
atom A and one atom B, and 

there are atoms directly 
below the hollow site

1 5 4

9 hollo
w 

AAA|
FCC

The hollow site between three 
atoms A, and there is atom 

directly below it

1 4 3

10 hollo
w 

AAA|
HCP

The hollow site between three 
atoms A, and there is atom 

directly below it

1 4 4

11 4fold The hollow between four 
atoms

4 0 0

Table S5 The S1 feature coded by LabelEncoder method.

S1 site types LabelEncoder number
hollow 1
bridge 2

top 3
4fold 4

hollow-tilt 5
top-tilt 6

bridge-tilt 7

Table S6 The S2 feature coded by LabelEncoder method.



S2 site types LabelEncoder number
A 1

AA 2
AB 3

AAA 4
AAB 5
ABB 6

AABB 7
B 8

BB 9

Table S7 The S3 feature coded by LabelEncoder method.

S3 site types LabelEncoder number
A 1
B 2

FCC 3
HCP 4

Table S8 The explication of 20 features in SHAP value plot.

Num Feature name Feature description

1 Mc
Mean column: mean of group number of elements in the 

composition
2 S2 Site02: the position of atoms around the adsorption site

3 Mp
Mean melting point: mean of melting point of elements in 

the composition
4 S1 Site01: the position information of the adsorption site

5 Md
Mean NdUnfilled: mean of number of unfilled d-orbitals 

among elements in the composition

6 Mu
Mean Nunfilled: mean of number of unfilled valence 

orbitals among elements in the composition

7 S3
Site03: the atoms position of adsorbed substance H 

around the adsorption site

8 Df
Std_dev heat of formation: standard deviation of heat 

formation among elements in the composition

9 Mr
Mean covalent radius: mean of covalent radius among 

elements in the composition

10 Mv
Mean ndvalence: mean of number of valence d-orbitals 

among elements in the composition

11 Me
Mean electronegativity: mean of electronegativity among 

elements in the composition

12 Ef
Entropy heat of formation: weighted entropy of heat 

formation among elements in the composition



13 Dc
Std_dev lattice constant: standard deviation of lattice 

constant among elements in the composition

14 Er
Entropy metallic radius: weighted entropy of metallic 

radius among elements in the composition

15 Mt
Mean thermal conductivity: mean of thermal conductivity 

among elements in the composition

16 Mn
Mean Mendeleev number: mean of Mendeleev number 

among elements in the composition

17 Ea
Entropy atomic volume: weighted entropy of atomic 

volume among elements in the composition

18 Eh
Entropy fusion heat: weighted entropy of fusion heat 

among elements in the composition

19 Ma
Mean atomic weight: mean of atomic weight among 

elements in the composition

20 Ae
Avg_dev electronegativity: average deviation of 

electronegativity among elements in the composition

Table S9 Comparison of experimentally measured  with the values predicted by 𝜂𝐻𝐸𝑅

LGB model with three HER alloy electrocatalysts in the dataset. 

Alloy DFT  𝜂𝐻𝐸𝑅

(V) ML predicted  (V)𝜂𝐻𝐸𝑅 Experimentally 
measured  (V)𝜂𝐻𝐸𝑅

CoNi 0.075 0.083 0.098 [5]
PtRu 0.146 0.131 0.113 [6]
RuCo 0.017 0.016 0.010 [7]
FeNi 0.124 0.126 0.126 [8]

Table S10 The ΔGH* values of fourteen alloys from MP database using ML model 

prediction and the DFT calculation.

Num Mp-id Formu
la

ML-ΔGH* 
(eV)

DFT-ΔGH* 
(eV)

ML-  𝜂𝐻𝐸𝑅

(V)
DFT-

  𝜂𝐻𝐸𝑅

(V)

Site

1 mp-437 MgAu -0.095 0.081 0.095 0.081 bridge
2 mp-721 TbCd -0.021 0.013 0.021 0.013 bridge
3 mp-1172 MgRh -0.105 0.020 0.105 0.020 bridge
4 mp-1857 YbCd -0.043 0.016 0.043 0.016 bridge
5 mp-2165 SmZn -0.038 0.020 0.038 0.020 bridge
6 mp-2525 PrAg -0.041 0.050 0.041 0.050 top
7 mp-2724 TbSb 0.042 0.051 0.042 0.051 bridge
8 mp-7576 CrSi -0.037 0.050 0.037 0.050 bridge
9 mp-11256 ScAu 0.038 0.036 0.038 0.036 top
10 mp-12793 NdAl -0.077 -0.024 0.077 0.024 bridge



11 mp-20582 LaIn -0.047 0.019 0.047 0.019 bridge
12 mp-574283 GdTe -0.040 0.097 0.040 0.097 bridge
13 mp-998985 TiAu -0.048 0.012 0.048 0.012 top
14 mp-

1079910
SiTc 0.033 0.047 0.033 0.047 top
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