Supporting Information

Accurate and Efficient Machine Learning Models for Predicting Hydrogen Evolution Reaction Catalysts Based on Structural and Electronic Feature Engineering in Alloys

Jingzi Zhang^{a,b,1}, Yuelin Wang^{a,b,1}, Xuyan Zhou^{a,b}, Chengquan Zhong^{a,b}, Ke Zhang^{a,b}, Jiakai Liu, Kailong Hu^{a,b,c*}, and Xi Lin^{a,b,c*}

^a School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, Guangdong, China

^b Blockchain Development and Research Institute, Harbin Institute of Technology, Shenzhen 518055, Guangdong, China

^c State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin 150001, Heilongjiang, China

*Corresponding authors. *E-mail addresses*: <u>linxi@hit.edu.cn (X. Lin);</u> hukailong@hit.edu.cn (K. Hu);

¹These authors contributed equally to this work.

Method

Support Vector Regression

The SVR model represents instances as points in space, with the examples of different categories separated by a large gap. The SVR training algorithm creates a model that assigns new instances to one of two categories, making it a non-probabilistic binary linear classifier, based on a series of training examples that are individually labeled as belonging to one of two categories. New instances are then mapped into the same area and assigned to one of the categories based on which side of the gap they fall on. SVR can perform both linear and non-linear regression by utilizing the kernel trick, which involves implicitly transforming inputs into high-dimensional feature spaces.[1]

Gradient boosting decision tree

GBDT model is a powerful tool for optimizing arbitrary differentiable loss functions. It works by constructing an additive model in a forward stage-wise fashion, where in each stage a regression tree is fit on the negative gradient of the given loss function. The boosting tree model was optimized using an additive model and a forward stagewise algorithm. During training, the negative gradient of the loss function was used to fit the approximate value of the loss in each iteration, resulting in a continuous reduction of the error term generated in the training process [2,3].

K-nearest neighbor

KNN model has been demonstrated to be effective in cases where the data labels are continuous rather than discrete variables. This method utilizes an unsupervised learner to identify the nearest neighbors of a query point, and then assigns a label to the query point based on the mean of the labels of its nearest neighbors.[4]

hollow ABB|HCP hollow ABB|FCC

Fig. S1. (a) The periodic table outlining H adsorbate elements and the 37 metals included in the dataset. Structure models and enumerated adsorption sites: (b) A_3B alloy, (c) AB alloy. The A and B atoms are represented dark green and brown sphere. The top, bridge, and hollow sites are shown in red, white, and green, respectively.

Fig. S2. The violins distribution represents three adsorption site features.

Fig. S3. Comparison of the R^2 score and the RMSE for six ML models on (a) the train set and (b) the test set.

Fig. S4. Box plots of ΔG_{H^*} distributions for different ranges of the space group.

ML model name	Parameters	
	Degree: 3	
SVR	C: 1e3	
	Gamma: scale	
	N_neighbors: 10	
KNN	Weights: uniform	
	Leaf_size: 45	
	N_estimators: 1000	
	Num_leaves: 15	
LGB	Max depth: -1	
	Subsample: 0.6	
	Random_state: 2022	
	N_estimators: 500	
RF	Max_depth: 8	
	Random_state: 2022	
	Max depth: 7	
CDDT	Min samples leaf: 8	
GBD1	N_estimators: 600	
	Random_state: 2022	
	Colsample bytree: 0.9	
VCD	Max depth: 5	
AUB	N estimators: 700	
	Objective: 'reg: squarederror'	

 Table S1 Detailed parameters of eleven ML models.

Number	Formula	Site information	$\Delta G_{\mathrm{H}^{*}}$ (eV)
1	Pt ₃ Ti	bridge AA B	-0.052
12	Sc ₃ Cu	top B	0.095
	•••		
8856	MnRu	hollow AAB FCC	0.026

Table S2 Dataset for HER alloy materials.

Table S3 Calculation methods of element features in compounds. The "i" represents the element number of alloys. The "t" represents the property of element. The "p" represents the weighted score. In the calculation of the weight entropy of mixing $\omega = t_i/(t_1 + ... + t_i)$.

Features description	Computational formula		
The average	$= \mu = (t_1 + + t_i)/i$		
Weighted mean	$= v = (p_1 \times t_1) + \dots + (p_i \times t_i)$		
Geometric mean	$= (t_1 \times \times t_i)^{1/i}$		
Weighted geometric mean	$= (t_1)^{p1} \times \times (t_i)^{pi}$		
The entropy of mixing	$= -\omega_1 ln(\omega_1) - \dots - \omega_i ln(\omega_i)$		
Weighted entropy of mixing	$=-\frac{p_1\omega_1}{p_1\omega_1+\ldots+p_i\omega_i}In\left(\frac{p_1\omega_1}{p_1\omega_1+\ldots+p_i\omega_i}\right)\ldots-\frac{p_i\omega_i}{p_1\omega_1+\ldots+p_i\omega_i}$		
Extreme value range	$= t_1 - t_2 (t_1 > t_2)$		
Weighted range	$= p_1 t_1 - p_2 t_2$		
The standard deviation	$= [(1/2)((t_1 - \mu)^2 + (t_2 - \mu)^2)]^{1/2}$		
Weighted standard deviation	$= [p_1(t_1 - \nu)^2 + p_2(t_2 - \nu)^2]^{1/2}$		
The maximum	$=$ Maximum (t_1, t_2)		
The minimum value	$=$ <i>Minimum</i> (t_1, t_2)		
The mode	$=$ Mode (count(t_1, t_2))		
Element species number	$= Unique ([t_1, t_2])$		

Table S4 The explication and LabelEncoder method for adsorption site features in the

Num	Site	Site feature description	LabelEn	LabelEn	LabelEn
	name		coder S ₁	coder S ₂	coder S ₃
1	top A	The top site of atom A	3	1	0
2	top B	The top site of atom B	3	8	0
3	bridge	The bridge site between atom	2	2	1
	AA A	A and atom A, and near the			
		atom A			
4	bridge	The bridge site between atom	2	3	2
	AB B	A and atom A, and near the			
_		atom B	_	_	
5	bridge	The bridge site between atom	2	3	1
	AB A	A and atom B, and near the			
ſ		atom A	•	0	2
6	bridge	The bridge site between atom	2	9	2
	BB B	B and atom B, and near the			
7	1 11 .	atom B	1	5	2
/	nono	the notion site between two	1	3	3
		atom A and one atom B, and			
	AAD ECC	helew the hellow site			
Q	FCC halla	The bollow site between two	1	5	1
0	nono	atom A and one atom B and	1	5	4
		there are atoms directly			
	HCP	below the hollow site			
9	hollo	The hollow site between three	1	4	3
,	W	atoms A, and there is atom	1	·	5
	AAA	directly below it			
	FCC	y			
10	hollo	The hollow site between three	1	4	4
	W	atoms A, and there is atom			
	AAA	directly below it			
	HCP	-			
11	4fold	The hollow between four	4	0	0
		atoms			

Table S5 The S1 feature coded by LabelEnd	oder method.
---	--------------

S ₁ site types	LabelEncoder number
hollow	1
bridge	2
top	3
4fold	4
hollow-tilt	5
top-tilt	6
bridge-tilt	7

Table S6 The S_2 feature coded by LabelEncoder method.

S ₂ site types	LabelEncoder number
A	1
AA	2
AB	3
AAA	4
AAB	5
ABB	6
AABB	7
В	8
BB	9

Table S7 The S_3 feature coded by LabelEncoder method.

S ₃ site types	LabelEncoder number
A	1
В	2
FCC	3
НСР	4

 Table S8 The explication of 20 features in SHAP value plot.

Num	Feature name	Feature description	
1	M _c	Mean column: mean of group number of elements in the composition	
2	S_2	Site02: the position of atoms around the adsorption site	
3	M_p	Mean melting point: mean of melting point of elements in the composition	
4	\mathbf{S}_1	Site01: the position information of the adsorption site	
5	M_d	Mean NdUnfilled: mean of number of unfilled <i>d</i> -orbitals among elements in the composition	
6	M_{u}	Mean Nunfilled: mean of number of unfilled valence orbitals among elements in the composition	
7	S_3	Site03: the atoms position of adsorbed substance H around the adsorption site	
8	D_{f}	Std_dev heat of formation: standard deviation of heat formation among elements in the composition	
9	$M_{\rm r}$	Mean covalent radius: mean of covalent radius among elements in the composition	
10	$M_{\rm v}$	Mean ndvalence: mean of number of valence <i>d</i> -orbitals among elements in the composition	
11	M _e	Mean electronegativity: mean of electronegativity among elements in the composition	
12	E_{f}	Entropy heat of formation: weighted entropy of heat formation among elements in the composition	

13	р	Std_dev lattice constant: standard deviation of lattice
15	D_{c}	constant among elements in the composition
14	E	Entropy metallic radius: weighted entropy of metallic
14	$\mathbf{L}_{\mathbf{r}}$	radius among elements in the composition
15	М	Mean thermal conductivity: mean of thermal conductivity
15	lVIt	among elements in the composition
16	М	Mean Mendeleev number: mean of Mendeleev number
$10 \qquad M_n$		among elements in the composition
17	г	Entropy atomic volume: weighted entropy of atomic
Γ / E_a		volume among elements in the composition
10	Б	Entropy fusion heat: weighted entropy of fusion heat
18	E_{h}	among elements in the composition
10	M	Mean atomic weight: mean of atomic weight among
19	Ma	elements in the composition
20	٨	Avg_dev electronegativity: average deviation of
20	Ae	electronegativity among elements in the composition

Table S9 Comparison of experimentally measured η^{HER} with the values predicted by LGB model with three HER alloy electrocatalysts in the dataset.

Alloy	DFT η^{HER} (V)	ML predicted η^{HER} (V)	Experimentally measured η^{HER} (V)
CoNi	0.075	0.083	0.098 [5]
PtRu	0.146	0.131	0.113 [6]
RuCo	0.017	0.016	0.010 [7]
FeNi	0.124	0.126	0.126 [8]

Table S10 The ΔG_{H^*} values of fourteen alloys from MP database using ML model prediction and the DFT calculation.

Num	Mp-id	Formu	ML- ΔG_{H^*}	DFT-ΔG _{H*}	ML- η_{HER}	DFT-	Site
		la	(eV)	(eV)	(V)	η_{HER}	
						(V)	
1	mp-437	MgAu	-0.095	0.081	0.095	0.081	bridge
2	mp-721	TbCd	-0.021	0.013	0.021	0.013	bridge
3	mp-1172	MgRh	-0.105	0.020	0.105	0.020	bridge
4	mp-1857	YbCd	-0.043	0.016	0.043	0.016	bridge
5	mp-2165	SmZn	-0.038	0.020	0.038	0.020	bridge
6	mp-2525	PrAg	-0.041	0.050	0.041	0.050	top
7	mp-2724	TbSb	0.042	0.051	0.042	0.051	bridge
8	mp-7576	CrSi	-0.037	0.050	0.037	0.050	bridge
9	mp-11256	ScAu	0.038	0.036	0.038	0.036	top
10	mp-12793	NdAl	-0.077	-0.024	0.077	0.024	bridge

11	mp-20582	LaIn	-0.047	0.019	0.047	0.019	bridge
12	mp-574283	GdTe	-0.040	0.097	0.040	0.097	bridge
13	mp-998985	TiAu	-0.048	0.012	0.048	0.012	top
14	mp-	SiTc	0.033	0.047	0.033	0.047	top
	1079910						

References

[1] H. Drucker, C.J. Burges, L. Kaufman, A. Smola, V. Vapnik, Support vector regression machines, Adv. Neural. Inf. Process. Syst. 9 (1996)

[2] H. Rao, X. Shi, A.K. Rodrigue, J. Feng, Y. Xia, M. Elhoseny, X. Yuan, L. Gu, Feature selection based on artificial bee colony and gradient boosting decision tree, Appl. Soft Comput. 74 (2019) 634–642.

[3] J. Feng, Y. Yu, Z.-H. Zhou, Multi-layered gradient boosting decision trees, Adv. Neural. Inf. Process. Syst. 31 (2018)

[4] J.M. Keller, M.R. Gray, J.A. Givens, A fuzzy k-nearest neighbor algorithm, IEEE Trans. Syst. Man Cybern. (1985) 580–585.

[5] Tan X, Geng S, Ji Y, et al. Closest packing polymorphism interfaced metastable transition metal for efficient hydrogen evolution. Advanced Materials, 2020, 32(40): 2002857.

[6] Zhang D, Wang Z, Wu X, et al. Noble metal (Pt, Rh, Pd, Ir) doped Ru/CNT ultra - small alloy for acidic hydrogen evolution at high current density. Small, 2022, 18(3): 2104559.

[7] Cai C, Liu K, Zhu Y, et al. Optimizing hydrogen binding on Ru sites with RuCo alloy nanosheets for efficient alkaline hydrogen evolution. Angewandte Chemie International Edition, 2022, 61(4): e202113664.

[8] Ren J T, Chen L, Wang Y S, et al. FeNi nanoalloys encapsulated in N-doped CNTs tangled with N-doped carbon nanosheets as efficient multifunctional catalysts for overall water splitting and rechargeable Zn–Air batteries. ACS Sustainable Chemistry & Engineering, 2019, 8(1): 223-237.