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Part I
The isomeric structures of Si3N4 via sublayer geometric combination

Fig. S1 Schematic diagram of the isomeric structures of Si3N4 (the difference between 
the different structures lies in the relative positions of N and Si, as shown by the green 
and red lines).

According to the relative positions of selected atoms in different layered 
substructure unit as indicator for different layer stacking patterns, a suffix of ‘(xy)’ (x 
or y = a, b) is labeled for identification, of which the ‘x’ represents the first attachment 
of SiN2 sublayer and one SiN sublayer, and the ‘y’ represent the second SiN sublayer 
attached to the SiN2-SiN bi-sublayer; And the ‘a’ or ‘b’ represents that the selected 
atoms are ‘staggered’ or ‘eclipsed’, respectively. For T and H series, the selected atoms 
for ‘x’ is the N atom in SiN sublayer (noted as ‘NCN=3’) and the hexa-coordinated Si 
(SiCN=6), and they are the NCN=3 of the second SiN sublayer and SiCN=6 for ‘y’. Therefore, 
there are three stacking methods of aa, ab and bb within symmetry limit for H and T 
series. For OT and OH series, the selected atoms for ‘x’ is also the NCN=3 and SiCN=6, 
while they are the NCN=3 of the second SiN sublayer and the SiCN=4 of the first SiN 
sublayer for ‘y’. And there are four stacking modes of aa, bb, ab and ba for OT and OH 
series. Thus, 14 structure patterns are systematically constructed and labeled as shown 
in Fig. S1.



Table. S1 The lattice constant (a/b), thickness ( z), space group, Energy (eV/atom), ∆
bandgap (Egap, (I) means the indirect band gap) Young's stiffness ( ) and Poisson's ratio 𝑌
( ) of isomeric structures of Si3N4. 𝜐

Si3N4-
series

a/b（
Å）

z∆
（Å）

Space 
group

Energy
(eV/atom)

Egap

（eV）

Young's 
stiffness
（N/m）

Poisson's 
ratio

H-aa 2.858 6.812 P-6m2 -7.807 2.154(I) 484.29 0.28

H-ba 2.858 6.814 P3m1 -7.807 2.329(I) 480.45 0.29

H-bb 2.857 6.821 P-6m2 -7.804 2.228(I) 495.33 0.27

T-aa 2.876 6.518 P-3m1 -8.068 3.859(I) 487.25 0.26

T-ba 2.874 6.532 P3m1 -8.065 3.492(I) 491.02 0.26

T-bb 2.872 6.546 P-3m1 -8.061 3.233(I) 497.83 0.26

OH-aa 2.882 7.148 P3m1 -7.344 metal 358.84 0.36

OH-ab 2.888 7.142 P3m1 -7.332 metal 149.36 0.73

OH-bb 2.887 7.153 P3m1 -7.342 metal 342.92 0.39

OH-ba 2.882 7.152 P3m1 -7.354 metal 342.80 0.39

OT-aa 2.904 6.707 P3m1 -7.584 metal 162.66 0.70

OT-ab 2.907 6.723 P3m1 -7.569 metal 237.87 0.56

OT-bb 2.901 6.747 P3m1 -7.579 metal 124.12 0.78

OT-ba 2.902 6.718 P3m1 -7.586 metal 311.66 0.44



Part II
Global structure search by CALYPSO code

The particle-swarm optimization (PSO) scheme, as implemented in the CALYPSO 
code1, is employed to search for low energy 2D Si3N4, which has been successfully and 
widely applied in global structure reach for new materials. In our PSO calculations, the 
population size and the number of generations are set as 30 and 20 (600 different 
structures), respectively. The global minimum and the other metastable isomers are 
shown in Fig. S1. Based on the rank of the structures in order of enthalpy as shown in 
Fig. S2, the global minimum structures for 2D Si3N4 is expected the T-aa phases in our 
work.

Fig. S2 The Si3N4 (T-aa) and isomers of 2D Si3N4 found by the CALYPSO structure 
search, where the number indicate the energies in ascending order.



Fig. S3 The energy difference between Si3N4 (T-aa) and 2D isomers of Si3N4. 



Part III
Difference/deformation charge density

Here, the difference (as well as deformation) charge density ( ) is defined as the ∆𝜌

difference between the electron cloud density ( ) of the Si3N4 (T-aa) monolayer and the 𝜌

electron cloud density of the N and Si atoms composing its structure, i.e.

∆𝜌 =  𝜌𝑆𝑖3𝑁4
‒ 𝜌𝑆𝑖 ‒ 𝜌𝑁#(1)

Lattice dynamics stability

Fig. S4 The phonon dispersion of Si3N4 (T-aa) structure.



Thermal stability

Fig. S5 The snapshots of Si3N4 (T-aa) structure after AIMD simulations.

Fig. S6 Energy evolution of the Si3N4 (T-aa) structure subjected to AIMD simulations 
at distinct temperatures: (a) 500 K, (b) 1000 K, (c) 2000 K, (d) 3000 K, and (e) 4000 
K. The structural snapshots (f) of Si3N4 (T-aa) post-AIMD simulations at 4000 K over 
a simulation time of 20 ps.

To investigate the thermal stability of the Si3N4 (T-aa) nanosheet, a 4 × 4 × 1 supercell 
is used for Ab Initio Molecular Dynamics (AIMD) simulations. The calculated result 
reveals that the system's total energy displays stable fluctuations throughout the AIMD 
simulations from 500 K to 4000 K, as shown in Fig. S6. Notably, during the AIMD 
simulation at 4000 K with extended time scale of 20 ps, only minor in-plane structural 
deformations can be observed. This demonstrates the excellent thermal stability of the 
2D-Si3N4 monolayer up to 4000 K.



Mechanical properties

For 2D structure, the Young's stiffness  and Poisson's ratio  can be calculated by (𝑌) (𝜐)

the equation as below2, 3:

𝑌𝑥 =
𝐶11𝐶22 ‒ 𝐶 2

12

𝐶22
,𝑌𝑦 =

𝐶11𝐶22 ‒ 𝐶 2
12

𝐶11
#(2)

𝜐12 =
𝐶12

𝐶11
,𝜐21 =

𝐶21
𝐶22

#(3)

Where the C11, C12 and C22 indicate the elastic constant. 



Part IV
GW calculation

To ensure the accuracy and reasonable output of the GW method, we first validated 
it with the silicon bulk, where we computed the GW band gap to be 1.08 eV 
(parameters: k: 8×8×8, two atoms in unit cell, 60 empty bands, ENCUTGW = 160 eV). 
This is in good agreement with the experimental result of 1.1 eV.4

In the case of 2D systems, the GW band gap is generally influenced by several 
factors: the number of empty bands (N), the grid density (n × n for k-points), the energy 
cutoff for response functions (ENCUTGW), and the length of the vacuum layer (Lz) in 
computation.5 Therefore, we performed several tests to verify the convergence of these 
parameters: (i) the energy cutoff for the response functions is 150 eV (Δ E = 0.003 eV, 
vs. 200 eV); (ii) the empty band number (N) is 56 with a total number of bands 
(NBANDS) equal to 96, which resulted in a small energy shift (Δ E = 0.008 eV, vs. 
NBANDS = 192); (iii) k-point is 12 × 12 ×1 (Δ E = 0.001 eV, vs. 15 × 15 × 1). 
Additionally, we calculated GW0 bandgap with different values of Lz (12, 14, 16, 20, 
24 Å) and extrapolated to the case of an infinite vacuum layer (1/Lz = 0),6, 7 as shown 
in Fig. S7.

Fig. S7 Dependence of the GW0 band gap on Lz for extrapolation to the bandgap limit 
(ENCUTGW = 150 eV, k-points: 12 × 12 ×1, NBANDS = 96)

Fig. S8 The band structure of Si3N4 (T-aa) by GW method (ENCUTGW = 150 eV, k-
points: 18 × 18 ×1, NBANDS = 96, Lz = 20 Å)



Electronic properties of isomeric structures of Si3N4

Fig. S9 Calculated band structure and DOS of isomeric structures of Si3N4 at PBE 
level.



Fig. S10 (a) The top and side views of Si3N4 (T-aa) structure under +12% and +14% 
biaxial strain, and the phonon dispersion of Si3N4 under +12% biaxial strain.

Fig. S11 The change ratio (%) of each chemical bond relative to the original bond length 
under different (a) electric field strengths (range of 0 to 0.74 V/Å) and (b) biaxial strains 
(range of -6% to +12%).

Table. S2 The change ratio (%) of each chemical bond relative to the original bond 
length under different electric field strengths (range of 0 to 0.74 V/Å). Where N(1) is 
tri-coordinated N, N(2) is tetra-coordinated N, Si(1)is tetra-coordinated Si, and Si(2) is 
hexa-coordinated Si.

Electric 

field

0 

V/ Å

0.1

V/ Å

0.2

V/ Å

0.3

V/ Å

0.4

V/ Å

0.5

V/ Å

0.6

V/ Å

0.7

V/ Å

0.72

V/ Å

0.74

V/ Å

N(1)-Si(1) 0 0.02% 0.03% 0.04% 0.07% 0.10% 0.08% 0.10% 0.11% 0.13%

N(2)-Si(1) 0 0.01% 0.01% 0.03% 0.05% 0.07% 0.04% 0.06% 0.08% 0.08%

N(2)-Si(2) 0 0.02% 0.02% 0.04% 0.06% 0.09% 0.07% 0.09% 0.10% 0.11%

Table. S3 The change ratio (%) of each chemical bond relative to the original bond 
length under different biaxial strains (range of -6% to +12%).

Biaxial strain -6% -4% -2% 2% 4% 6% 8% 10% 12%

N(1)-Si(1) -3.74% -2.59% -1.35% 1.45% 2.94% 4.51% 6.12% 7.82% 9.43%

N(2)-Si(1) -4.51% -3.00% -1.51% 1.49% 2.98% 4.47% 5.97% 7.45% 8.94%

N(2)-Si(2) -3.68% -2.46% -1.24% 1.28% 2.56% 3.85% 5.17% 6.45% 7.80%



Fig. S12 The partial charge density of the VBM and CBM of 2D Si3N4 (T-aa) at vertical 
electric field.



Carrier mobilities

The charge carrier mobilities of the system can be calculated using the variable 
situation (DP) theory,8 which has been widely used in a variety of two-dimensional 
structures for the prediction of carrier mobilities.9-11 According to DP theory, the 
mobility of specific carrier in a two-dimensional material can be calculated by the 
following equation.

𝜇2𝑑 =
𝑒ℏ3𝐶2𝑑

𝑘𝐵𝑇𝑚 ∗ 𝑚𝑑(𝐸𝑖
1)2

#(4)

where e, ħ, kB and T are the electron charge, reduced Planck constant, Boltzmann 
constant and Kelvin temperature, respectively. m* denotes the effective mass of the 

carrier at VBM and CBM; md is the average effective mass, defined as . 𝑚𝑑 = 𝑚 ∗
𝑥 𝑚 ∗

𝑦

C2d is the stiffness of elasticity;  is the deformation potential constant, which is 𝐸𝑖
𝑙

calculated by the following equation.

𝐸𝑖
𝑙 =

∂𝐸𝑒𝑑𝑔𝑒

∂(∆𝑙 𝑙0)
#(5)

where  denotes the band edge. In this calculation, a narrow  ranging from -𝐸𝑒𝑑𝑔𝑒
∆𝑙 𝑙0

0.6 % to +0.6 % is selected to fit . All results are shown in Table S4.𝐸𝑖
𝑙

Table. S4 Effective mass m* of charge carrier, average effective mass md, deformation 
potential constant El and carrier mobility μ2d along the a- and b-directions of Si3N4 (T-
aa) lamellar structure at 300 K. (me is the rest mass of electron.)

Si3N4 h(a) h(b) e(a) e(b)
C2d(N/m) 519 519 519 519
El (eV) 1.917 1.819 5.112 4.833
m*(me) 2.334 0.542 0.363 0.565
md (me) 1.125 1.125 0.453 0.453

μ (

)𝑐𝑚2𝑉 ‒ 1𝑠 ‒ 1

1148 5490 2578 1853



Table. S5 Effective mass m* of charge carrier, average effective mass md, deformation 
potential constant El and carrier mobility μ2d along the a- and b-directions of Ge3N4 
lamellar structure at 300 K. (me is the rest mass of electron.)

Ge3N4 h(a) h(b) e(a) e(b)
C2d(N/m) 392 392 392 392
El (eV) 2.157 1.727 9.427 7.760
m*(me) 3.276 0.469 0.194 0.193
md (me) 1.239 1.239 0.193 0.193

μ (

)𝑐𝑚2𝑉 ‒ 1𝑠 ‒ 1

443 4824 2507 3719

Table. S6 Effective mass m* of charge carrier, average effective mass md, deformation 
potential constant El and carrier mobility μ2d along the a- and b-directions of SiGe2N4 
lamellar structure at 300 K. (me is the rest mass of electron.)

SiGe2N4 h(a) h(b) e(a) e(b)
C2d(N/m) 420 420 420 420
El (eV) 2.327 1.397 7.923 9.130
m*(me) 5.192 0.429 0.255 0.254
md (me) 1.492 1.492 0.255 0.255

μ (

)𝑐𝑚2𝑉 ‒ 1𝑠 ‒ 1

214 7171 2200 1663

Table. S7 Effective mass m* of charge carrier, average effective mass md, deformation 
potential constant El and carrier mobility μ2d along the a- and b-directions of GeSi2N4 
lamellar structure at 300 K. (me is the rest mass of electron.)

GeSi2N4 h(a) h(b) e(a) e(b)
C2d(N/m) 482 482 482 482



El (eV) 2.027 3.597 6.130 6.783
m*(me) 2.512 0.492 0.368 0.577
md (me) 1.111 1.111 0.461 0.461

μ (

)𝑐𝑚2𝑉 ‒ 1𝑠 ‒ 1

896 1453 1614 841



Magnetism raised by charge doping

Fig. S13 Calculated magnetic moment and magnetic energy (EMag) of the 2D Si3N4, 
Ge3N4 Sn3N4, Ge(Si2)N4, Sn(Si2)N4 and Sn(Ge2)N4 as a function of carrier density, 
where negative and positive values correspond to electron- and hole-doping densities, 
respectively.

It is noteworthy that, for Si3N4 and Ge(Si2)N4, there have an obvious magnetic moment 
change near the carrier concentration of 0, but the EMag is almost to 0, we believe that 
they are in an unstable state of magnetization and non-magnetization, so it is considered 
as non-effective magnetization raised by charge-doping.

Fig. S14 The calculated band structure of Si3N4 at hole concentration of 7.00 × 1014 cm−2. 



Magnetic Ground State, Magnetic Anisotropic Energy (MAE), and Curie 
Temperature Analysis

For the magnetic orders in Si3N4 and Sn3N4 with heavy hole doping, both 
ferromagnetic (FM) and antiferromagnetic (AFM) coupling orders are considered to 
determine the magnetic ground state, within accounting only the nearest neighbor 
magnetic exchange interactions (as shown in Fig. S15a and S15b). Calculated results 
show that Si3N4 (T-aa) and Sn3N4 with hole-doping of 1h+ per cell both exhibit a FM 
ground state as half-metals, with the energy difference between AFM and FM is 90.3 
meV per unit cell (meV/uc) and 53.1 meV/uc, respectively (HSE06 level). 

The magnetic anisotropy energy (MAE) of magnetized Si3N4 and Sn3N4 are 
calculated with the HSE06 + SOC method along the x-, y-, and z-directions, as listed in 
Table. S8. The easy axis (EA) of Si3N4 and Sn3N4 is found to along with the in-plane 
x-direction. The calculated MAEs for the y- and z- are 0.3 and 1.0 μeV/uc for Si3N4, 0.1 
and 12.9 μeV/uc for Sn3N4, respectively. This result suggests that the MAE of 
magnetized Si3N4 and Sn3N4 is almost ignorable, indicating that the magnetic 
interaction within the system could be described by the Heisenberg model. The spin 

Hamiltonian can be expressed as
𝐻 =  𝐸0 + ∑

𝑖𝑗

𝐽𝑖𝑗𝑀𝑖𝑀𝑗

Where E0 is the energy without magnetic coupling, J is the nearest exchange 
parameters, and M is the unit spin vector of 1 μB. The energy profiling results of the 
two magnetic configurations (Fig. S15c) for each unit cell are as follows:
𝐻𝐹𝑀 = 𝐸0 + 3𝐽
𝐻𝐴𝐹𝑀 = 𝐸0 ‒ 𝐽
Utilizing the energy difference between the AFM and FM states, the magnetic exchange 
energy J is approximately 22.6 meV/uc for Si3N4 and 13.3 meV/uc for Sn3N4. 

Furthermore, Monte Carlo simulation results are used to fit the temperature-
dependent magnetization intensity given by M(T) = (1 − T/Tc)β. The method of 
predicting Curie temperature (Tc) has been widely employed.12, 13 The simulation 
structure used measures 40 nm × 40 nm, with 40000 equilibrium steps and 80000 
averaging steps carried out in the VAMPIRE software.14 The Tc of Si3N4 and Sn3N4 is 
calculated to be 298 K and 180 K (Fig. S15d), respectively, much higher than that in 
CrI3 monolayer (45 K in experiment,15 50 K in simulation with same method12). This 
suggests that Si3N4 and Sn3N4 has potentially promising application in spintronics.



Fig. S15 The spin density (the isosurfaces is set as 0.005 e/Bohr3) of (a) ferromagnet 
and (b) antiferromagnet configuration of Si3N4 (T-aa), Yellow and blue region represent 
spin-up and spin-down, respectively. (c) The FM and AFM configurations. (d) 
Normalized magnetization of Si3N4 (blue) and Sn3N4 (black) as a function of 
temperature by Monte Carlo simulation.

Table. S8 The magnetic properties date of Si3N4 and Sn3N4. The energy of FM and 
AFM state (FM, AFM eV/uc), the magnetic exchange energy (J, meV), the critical 
temperature (Tc, K), the relative energy between the magnetization direction and easy 
axis (x, y, z, μeV/uc).

FM AFM J Tc x y z
Si3N4 -67.8134 -67.7231 22.6 298 0 0.3 1.0
Sn3N4 -54.2176 -54.1645 13.3 180 0 0.1 12.9



Part V
Structures of 2D nitride analogues

The extended study of analogues of nitrides of IVA analogues of Si3N4 (Si, Ge, Sn 
and Pb) are carried out. Based on the Si3N4 (T-aa) nanosheet, two characteristically 
different structural types are investigated, including the A(B2)N4-type structure with 
equivalent upper and lower surfaces and the A(AB)N4-type structure with non-
equivalent upper and lower surfaces (i.e., Janus structure). Here, the A atoms outside 
the bracket represent the hexa-coordinated atoms in the inner layer, while those inside 
the bracket represent the tetra-coordinated atoms in the outer layer, as shown in Fig. 
S16-S18.

Fig. S16 Top and side view of A3N4 (A = Si, Ge, Sn and Pb)



Fig. S17 Top and side view of A(B2)N4 (A and B = Si, Ge, Sn and Pb)

Fig. S18 Top and side view of A(AB)N4 (A and B = Si, Ge, Sn and Pb)



Table. S9 The lattice constant (a/b), thickness ( z) and space group of A3N4, A(B2)N4 ∆
and A(AB)N4 (A and B = Si, Ge, Sn and Pb)

Structures a/b（Å） Z（Å）∆ Space group
Si3N4 2.876 6.517 P-3m1
Ge3N4 3.065 7.021 P-3m1
Sn3N4 3.391 7.758 P-3m1
Pb3N4 3.574 8.315 P-3m1

Si(Ge2)N4 2.994 6.952 P-3m1
Si(Sn2)N4 3.221 7.689 P-3m1
Si(Pb2)N4 3.308 8.204 P-3m1
Ge(Si2)N4 2.946 6.615 P-3m1
Ge(Sn2)N4 3.297 7.683 P-3m1
Ge(Pb2)N4 3.395 8.201 P-3m1
Sn(Si2)N4 3.055 6.823 P-3m1
Sn(Ge2)N4 3.174 7.184 P-3m1
Sn(Pb2)N4 3.495 8.250 P-3m1
Pb(Si2)N4 3.111 6.998 P-3m1
Pb(Ge2)N4 3.239 7.335 P-3m1
Pb(Sn2)N4 3.414 7.934 P-3m1

Si(SiGe)N4 3.005 6.825 P3m1
Si(SiSn)N4 3.224 7.350 P3m1
Si(SiPb)N4 3.337 7.736 P3m1
Ge(GeSi)N4 2.934 6.745 P3m1
Ge(GeSn)N4 3.286 7.496 P3m1
Ge(GePb)N4 3.407 7.862 P3m1
Sn(SnSi)N4 3.033 7.194 P3m1
Sn(SnGe)N4 3.177 7.397 P3m1
Sn(SnPb)N4 3.512 8.088 P3m1
Pb(PbSi)N4 3.058 7.483 P3m1
Pb(PbGe)N4 3.213 7.682 P3m1
Pb(PbSn)N4 3.440 8.004 P3m1



Stabilities of 2D nitride analogues
To confirm the stabilities of 2D nitride analogues, we first calculated the phonon 

spectra for Ge3N4, Sn3N4, and Pb3N4, as shown in Fig. S19. Apart from Pb3N4, no 
imaginary frequencies appear at any k-point for Ge3N4 and Sn3N4, suggesting good 
lattice dynamical stability for these structures. To further examine their thermal 
stability, we conducted 10 ps Ab Initio Molecular Dynamics (AIMD) simulations for 
Ge3N4 and Sn3N4 at 500 K. The simulations reveal only slight structural deformations 
in these two materials throughout the simulations, while the total energy fluctuations 
remain stable, thus demonstrating their excellent thermal stability at 500 K (Fig. S19). 
Furthermore, we have calculated the elastic constant tensor matrix for both Ge3N4 and 
Sn3N4 (T-aa) structures, as listed in Table. S10. Considering the mechanical stability 
criterion for 2D structures, specifically C11C22 - C12C21 > 0 and C66 > 0, both Ge3N4 and 
Sn3N4 (T-aa) structures also exhibit mechanical stability. The calculations for Young's 
stiffness and Poisson's ratio show Yx = Yy = 361 N/m and 0.28 for Ge3N4 (T-aa) sheet, 
and Yx = Yy = 253 N/m and 0.34 for Sn3N4, respectively. These results indicate that both 
Ge3N4 and Sn3N4 are softer than Si3N4 (T-aa). Further calculation of the phonon spectra 
of other non-Pb-containing A(B2)N4 and Janus A(AB)N4 (A = Si, Ge, and Sn, B = Si, 
Ge, and Sn ) structures reveals that all nitride structures do not exhibit any imaginary 
frequencies at k-points other than near the Γ point (Fig. S20), indicating their good 
lattice dynamical stability.

Fig. S19 The phonon dispersions of (a) Ge3N4, (b) Sn3N4, and (c) Pb3N4. The energy 
evolution and structural snapshots of the Ge3N4 and Sn3N4 subjected to AIMD 
simulations at distinct temperatures of 500 K in simulate time of 10 ps.  



Fig. S20 The phonon dispersions of A(B2)N4 and Janus A(AB)N4 structures.

Table. S10 The elastic constant C11/22, C12/21, C66, and Young's stiffness (Yx/Yy) and 
Poisson's ratio (ν) of A3N4 (A = Si, Ge, and Sn)

C11/C22 (N/m) C12/C21 (N/m) C66 (N/m) Yx/Yy (N/m) ν
Si3N4 520 137 192 487 0.26
Ge3N4 392 110 141 361 0.28
Sn3N4 287 98 94 253 0.34



Part VI

Formation energy, electronic properties and analysis of 2D nitride 

analogues.

To examine the thermodynamic stability of these structures, the formation energy 
has been carried out. For the chemical general formula ABCN4, their formation energies 
(Ef) is calculated according to the following equation.

𝐸𝑓 =
𝐸𝐴𝐵𝐶𝑁4

‒ 𝐸𝐴 ‒ 𝐸𝐵 ‒ 𝐸𝐶 ‒ 4𝐸𝑁

7
#(6)

where ,  and  denote the average energy per atom in the most stable bulk phase 𝐸𝐴 𝐸𝐵 𝐸𝐶

materials corresponding to elements A, B and C, and  denotes the average energy of 𝐸𝑁

an N atom in nitrogen. 

As shown in Fig. 5c and 5d, there are 10 structures (including Si3N4) with negative 
formation energy, mostly between -0.3 and -0.7 eV/atom, and the rest are four slightly 
negative structures (-0.1 eV/atom < Ef < 0 eV/atom). Both A(B2)N4 and A(AB)N4 
structures have the same phenomenon: the position is closer to the left upper corner of 
the table, the formation energy is more negative with higher stability; while the position 
is closer to the bottom right of the table, the formation energy is more positive with less 
stability. In other words, they satisfy two rules at the same time: (a) the lower the 
number of elements leads to more stability; (b) the larger the proportion of low-number 
element in the composition results in more stability. For A = B, the formation energy 
of Si, Ge, Sn and Pb is -0.991, -0.033, 0.218, and 1.065 eV/atom, respectively. When 
A ≠ B, the formation energy of the system is roughly equal to the linear combination of 
respective A3N4 nanosheet with deviation range of from 0.010 eV/atom to 0.383 
eV/atom, as shown in Fig. S24a and S24b. 

The electronic properties are explored at PBE and HSE06 level, as shown in Fig 5e, 
5f (including Si3N4) and Fig S21, S22, and S23. At PBE level, most of the structures 
are semiconductors (24/28) and have indirect bandgap (18/24). Only a few of them are 
metallic (4/28). But, all of them are semiconductors at HES06 level, with many indirect 
bandgap (22/28), and a few direct bandgap (6/28). The value and types of bandgap of 
the A(B2)N4 and A(AB)N4 structures are similar overall. The largest/smallest indirect 
bandgap is 5.347/0.195 eV for Si(SiGe)N4/Pb3N4, and the largest/smallest direct 
bandgap is 3.087/0.972 eV for Si(SiSn)N4/Pb(SiPb)N4, respectively. Similar to the 
formation energy results, the bandgap values also satisfy two rules at the same time: (a) 



the lower the number of elements in the structure leads to a larger bandgap; (b) the 
larger the proportion of low number elements in the composition leads to a larger 
bandgap. Similarly, when A = B, the bandgap of the system becomes smaller as the 
atomic number becomes larger: Si (5.273 eV) > Ge (3.363 eV) > Sn (1.522 eV) > Pb 
(0.195 eV); when A ≠ B, the bandgap of the system can also be considered as a roughly 
linear combination of bandgap of the respective A3N4 nanosheet but with larger 
deviation, as shown in Fig. S24c and S24d.

Ultimately, these two phenomena likely result from the inert electron pair effect, 
where the relatively inner valence s-orbital of the IVA atom turns more passivated as 
the period of the element becomes larger to leads increasingly difficulty to participate 
in bond formation to leads to smaller bonding energy (i.e., higher formation energy) 
and less orbital-hybridization splitting (i.e., smaller bandgap), as shown in Fig. S25. 
Among them, the Pb-6s is the most significant and difficult to participate in bonding, 
while Si-3s is the least significant and most easy one. This results in that there is a 
strong bonding ability (wide bandgap) between (in) Si and N, a slightly weaker bonding 
ability (moderate bandgap) between (in) Ge and N, and Sn and N, while the weakest 
bonding ability (small bandgap) between (in) Pb and N. In general, the nitride analogues 
of Si3N4 have a wide bandgap distribution range (0.195 -5.347 eV), which have a 
significant expansion effect relative to Si3N4 (T-aa) and effectively enrich the variety 
and electronic properties for the material family.

Fig. S21 Calculated band structure and DOS of isomeric structures of A3N4 (A = Si, 
Ge, Sn and Pb) at PBE level.





Fig. S22 Calculated band structure and DOS of isomeric structures of A(B2)N4 (A and 
B = Si, Ge, Sn and Pb) at PBE level.



Fig. S23 Calculated band structure and DOS of isomeric structures of A(AB)N4 (A 
and B = Si, Ge, Sn and Pb) at PBE level.



 

Fig. S24 The deviation of linear combination of respective A3N4 for formation energies 

and bandgap (HSE06 level) of (a)&(c) A(B2)N4 and (b)&(d) Janus structure A(AB)N4, 

where the color of the blocks indicates the degree of deviation of formation energy and 

bandgap.

Fig. S25 The partial DOS and integral DOS (IDOS) of the orbital-s (a) and orbital-d (b) 
of A3N4 structure (A = Si, Ge, Sn and Pb), the Fermi level is set as 0.



Part VII
Magnetism raised by charge doping.

Fig. S26 Spin-resolved projected density of states at a hole concentration of 2.00 × 1014 cm−2. 

The inset depicts are the corresponding spin density (the isosurfaces is set as 0.001 e/Bohr3). 

The Fermi level is indicated by a dashed line at 0 eV.

Fig. S27 The spin density of 2D Sn3N4 at a hole concentration of (a) +0.1, (b) +0.2, (c) 
+0.3 and (d) +1.0 h+/cell, respectively.



Table. S11 The range of magnetization doping concentration (RMDC) and magnetic 
energy (EMag) of Si3N4, Ge3N4, Sn3N4, Ge(Si2)N4, Sn(Si2)N4 and Sn(Ge2)N4 

RMDC

(× 1013 cm-2)
EMag

(meV/carrier)
Si3N4 41.9 ~ 139.6 59.3
Ge3N4 24.3 ~ 121.4 97.3
Sn3N4 0.1 ~ 100.2 103.8

Ge(Si2)N4 39.8 ~ 132.7 83.5
Sn(Si2)N4 0.1 ~ 123.6 83.6
Sn(Ge2)N4 0.1 ~ 113.5 100.7
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