## Electronic Supplementary Material

# Hybrid multifunctionalized mesostructured stellate silica nanoparticles loaded with $\mathbf{T b}^{3+} / E \mathbf{E u}^{3+} \beta$-diketonate complexes as efficient ratiometric emissive thermometers working in water 

Tristan Pelluau, ${ }^{\text {a }}$ Saad Sene, ${ }^{\text {a }}$ Lamiaa M.A. Ali, ${ }^{\text {b,c }}$ Gautier Félix, ${ }^{\text {a }}$ Faustine Manhes, ${ }^{\text {b }}$ Albano N. Carneiro Neto, ${ }^{\text {d }}$ Luís D. Carlos, ${ }^{\text {d }}$ Belen Albela, ${ }^{e}$ Laurent Bonneviot, ${ }^{e}$ Erwan Oliviero, ${ }^{\text {a }}$ Magali Gary-Bobo, ${ }^{\text {b }}$ Yannick Guari*a and Joulia Larionova*a<br>${ }^{a}$ ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France. E-mail : joulia.larionova@umontpellier.fr, yannick.guari@umontpellier.fr<br>${ }^{b} I B M M$, Univ. Montpellier, CNRS, ENSCM, Montpellier, France.<br>${ }^{c}$ Department of Biochemistry, Medical Research Institute, University of Alexandria, Alexandria, Egypt.<br>${ }^{d}$ Department of Physics and CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal.E-mail: 1carlos@ua.pt<br>${ }^{e}$ Laboratoire de Chimie, ENS de Lyon, Université de Lyon, Lyon, France.

## Contents

1. Tables and Figures ..... 2
Table S1 ..... 2
Table S2 ..... 3
Table S3 ..... 4
Table S4 ..... 5
Table S5 ..... 6
Figure S1 ..... 6
Figure S2 .....  7
Figure S3 ..... 7
Figure S4 .....  8
Figure S5 .....  8
Figure S6 ..... 9
Figure S7 ..... 9
Figure S8 ..... 10
Figure S9 ..... 10
Figure S10 ..... 11
Figure S11 ..... 11
Figure S12 ..... 11
Figure S13 ..... 12
Figure S14 ..... 13
Figure S15 ..... 13
Figure S16 ..... 14
Figure S17 ..... 14
Figure S18 ..... 15
Figure S19 ..... 16
Figure S20 ..... 16
Figure S21 ..... 17
Figure S22 ..... 18
Figure S23 ..... 19
Figure S24 ..... 20
Figure S25 ..... 21
Figure S26 ..... 22
Figure S27 ..... 22
Figure S28 ..... 23
2. Theoretical calculations ..... 23
2.1. Structural and Judd-Ofelt analysis. .....  23
2.2. Pairwise Tb-to-Eu energy transfer ..... 24
2.3. Distribution of $\mathrm{Tb}-\mathrm{Eu}$ pairs and the average energy transfer rate ..... 27
References ..... 28

## 1. Tables and Figures

Table S1. Comparison of thermometric performance for some illustrative examples of nanothermometers based on nanoparticles containing lanthanide complexes or organic dyes working in water. tta $=2$-thenoyltrifluoroacetone, $\mathrm{btfa}=4,4,4$-trifluoro-1-phenyl-2,4-butanedione; bpeta $=1,2$-bis( 4 -pyridyl)ethane); tppo $=$ triphenylphosphine oxide; $\mathrm{L} 1=4,4,4$-trifluoro-1-phenyl-1,3-butadionate, $\mathrm{L} 2=4,4,4$-trifluoro-1-(4-chlorophenyl)-1,3-butadionate, $\mathrm{PMO}=\mathrm{Periodic}$ Mesoporous Organosilica

|  | Nanoparticles' size (nm) | Sensor's specificity | Temperature range | Maximal thermal sensitivity, $S_{r}\left(\%^{-1}\right)$ | Ref. |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Core@shell $\mathrm{Bi}_{2} \mathrm{SiO}_{2}: \mathrm{Yb}^{3+}-\mathrm{Er}^{3+}$ @ $\mathrm{SiO}_{2}$ | ${ }^{\sim} 190 \mathrm{~nm}$ | Upconverting nanoparticles, emission in the NIR region | 293-343 K | 1.1 (300 K) | 64 |
| $\mathrm{NaGdF}_{4} \mathrm{Yb}^{3+}: \mathrm{Er}^{3+}$ @SiO $2 / \mathrm{Eu}(\mathrm{tta})_{3}$ | $\sim 40 \mathrm{~nm}$ | Self-referenced, dual mode sensor, emission in the NIR region | $293-330$ K | 2.3 (329 K) | 38 |
| $\mathrm{Fe}_{2} \mathrm{O}_{3} @ \mathrm{SiO}_{2} /[\mathrm{Tb}$ (btfa) $\mathrm{MeOH}($ bpeta) $] / /[\mathrm{Eu}(\mathrm{btfa}) \mathrm{MeOH}($ bpeta) $]$ | Not well definite shape, ~100-400 | Dispersible in water, but the measurements have been done in polymer films | 10-350 K | 4.9 (120-190 K) | 32 |
| Multicore beads of $\mathrm{Fe}_{2} \mathrm{O}_{3}$ @ polymer shell (P4VP-b-P(PMEGA-coPEGA $) /\left[\mathrm{Tb}(\mathrm{btfa})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] / /\left[\mathrm{Eu}(\mathrm{btfa})_{3}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right]$ | $\sim 50 \mathrm{~nm}$ | Self-referencing, excitation at 365 nm , emission in the visible region | $295-315$ K | 5.8 (296 K) | 39 |
| Core@shell $\mathrm{SiO}_{2} @$ PMAA/[Tb/EuL ${ }_{1}$ tppo] or [Tb/SmL2tppo] | ~150-500 | ```Self-referenced, measurements in water, Toxicity investigations excitation at UV, emission in the visible region``` | 278 - 323 K | $\begin{aligned} & 3.8(293 \mathrm{~K} \text { for } \\ & \left.\mathrm{Tb} \mathrm{~b}^{3+} / \mathrm{Eu}^{3+}\right) \\ & 3.3(293 \mathrm{~K} \text { for } \\ & \left.\mathrm{Tb}^{3+} / \mathrm{Sm}^{3+}\right) \end{aligned}$ | 37 |
| Bipyrimidine-functionalized PMO grafted with Dy $(\mathrm{acac})_{3}, \mathrm{~Tb} / \mathrm{Eu}(\mathrm{acac})_{3}$ or $\mathrm{Tb} / \mathrm{Sm}(\mathrm{acac})_{3}$ | Irregular shape, $100-400 \mathrm{~nm}$ | Self-referenced, excitation at UV, emission in the visible region | $278-323$ K | $\begin{aligned} & 2.7(278 \mathrm{~K} \text { for } \\ & \left.\mathrm{Tb}^{3+} / \mathrm{Sm}^{3+}\right) \\ & 1.9(260 \mathrm{~K} \text { for } \\ & \left.\mathrm{Tb}^{3+} / \mathrm{Eu}^{3+}\right) \end{aligned}$ | 35 |
| Pyridine dicarboxoamide/1,10-phenantroline functionalized PMO with coordinated $\mathrm{Eu}^{3+} / \mathrm{Tb}^{3+}$ or $\mathrm{Sm}^{3+} / \mathrm{Tb}^{3+}$ ions | $50-70 \mathrm{~nm}$ | Self-referenced $\lambda_{\mathrm{ex}}=326 \mathrm{~nm},$ <br> emission in the visible region | $260-460$ K | $\begin{aligned} & 1.6(360 \mathrm{~K} \text { for } \\ & \left.\mathrm{Tb}^{3+} / \mathrm{Eu}^{3+}\right) \\ & 2.4(340 \mathrm{~K}) \end{aligned}$ | 36 |
| Mesoporous $\mathrm{SiO}_{2}$ nanoparticles encapsulated Rhodamine 6G/Rhodamine B dyes | 50 nm | FRET between the dyes, $\lambda_{\mathrm{ex}}=488 \mathrm{~nm},$ <br> emission in the visible region | 278 - 323 K | 1.0 (293-323 K) | 40 |
| $\mathrm{Tb}^{3+} / E u^{3+}$ ions coordinated to pyromellitic acide functionalized nanodiamond | Irregular shape, $60-140 \mathrm{~nm}$ | $\lambda_{\mathrm{ex}}=254 \mathrm{~nm},$ <br> emission in visible region | $50-300 \mathrm{~K}$ | 0.5 (275 K) | 65 |
| $\mathrm{Fe}_{3} \mathrm{O}_{4} @ \mathrm{SiO}_{2} @$ pNIPAM-co-RhBITC/Au containing Rodamin B and isothiocyanate dyes | 150 nm | Thermometry in living cells, emission in the visible region | 299 - 314 K | -4.84 | 66 |
| Stellate $\mathrm{SiO}_{2} /\left[(\mathrm{Tb} / \mathrm{Eu})_{9}(\mathrm{acac})_{16}\left(\mathrm{~m}_{3}-\mathrm{OH}\right)_{8}\left(\mathrm{~m}_{4}-\mathrm{O}\right)\left(\Xi_{4}-\mathrm{OH}\right)\right] \cdot \mathrm{H}_{2} \mathrm{O}$ | 95.0 | Thermometry in water | $293-343 \mathrm{~K}$ | 1.4 (315 K) | This work |
|  |  | Thermometry in PBS | 293-343 K | 4.1 (343 K) |  |
|  |  | Thermometry in cells | 293-313 K | 8.6 (313 K) |  |
|  | 92.3 | Thermometry in water | 293-343 K | 2.3 (329 K) |  |

Table S2. Integrated areas of the $\mathrm{Eu}^{3+}{ }^{5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{2}\left({ }^{\mathrm{S}_{0 \rightarrow 2}}\right)$ and $\mathrm{Eu}^{3+}{ }^{5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{4}\left({ }^{\mathrm{S}_{0 \rightarrow 4}}\right)$ transitions with the $\mathrm{S}_{0 \rightarrow 1}$ set to 1 . Values of $\Omega_{\lambda}(\lambda=2,4$, and 6$)$, in units of $10^{-20} \mathrm{~cm}^{2}$, for $\mathrm{Ln}^{3+}$ in compounds $\mathbf{1}, \mathbf{M S N}-1$, and MSN-2. The values in parentheses are the forced electric dipole (FED) contributions obtained from the JOYSpectra program. ${ }^{9}$

| Sample | Ion $^{*}$ | $S_{0 \rightarrow 2}$ | $S_{0 \rightarrow 4}$ | $\Omega_{2}$ | $\Omega_{4}$ | $\Omega_{6 \dagger}$ |
| :---: | :--- | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | $\mathbf{E u}^{3+}$ | 11.8 | 3.1 | $20.0(0.90)$ | $10.8(1.14)$ | $3.4(1.77)$ |
|  | $\mathbf{T b}^{3+}$ | - | - | $14.8(0.16)$ | $5.7(0.17)$ | $1.0(0.26)$ |
|  | $\mathbf{E u}^{3+}$ | 2.3 | 1.7 | $4.0(0.07)$ | $5.9(0.11)$ | $1.9(0.24)$ |
| $\mathbf{M S N - 1}$ | $\mathbf{T b}^{3+}$ | - | - | $3.5(0.05)$ | $4.4(0.06)$ | $1.2(0.12)$ |
|  | $\mathbf{E u}^{3+}$ | 2.2 | 1.7 | $3.7(0.03)$ | $5.8(0.11)$ | $1.8(0.21)$ |
| $\mathbf{M S N - 2}$ | $\mathbf{T b}^{3+}$ | - | - | $3.2(0.02)$ | $4.4(0.06)$ | $1.1(0.10)$ |

$\dagger$ Theoretically obtained; * $\mathrm{Tb}^{3+}$ intensity parameters were obtained theoretically using the same environment parameters obtained from the $\mathrm{Eu}^{3+}$ analogue.

Table S3. $\mathrm{Tb}^{3+}$ to $\mathrm{Eu}^{3+}$ (forward) energy transfer pathways for $R=3.44 \AA$ in both $\mathbf{M S N}-1$ and MSN-2 at 300 K .

| Path. | From | To | $\delta$ | $W_{d-d}$ | $W_{d-q}$ | $W_{q-q}$ | $W_{e x}$ | $W_{m d-m d}$ | $W^{f}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | ${ }^{5} \mathrm{D}_{4} \rightarrow{ }^{7} \mathrm{~F}_{4}$ | ${ }^{7} \mathrm{~F}_{1} \rightarrow{ }^{5} \mathrm{D}_{1}$ | -1663 | $7.9 \times 10^{-12}$ | $4.3 \times 10^{-8}$ | $5.9 \times 10^{-5}$ | 9.4 | 0 | 9.4 |
| 2 | ${ }^{5} \mathrm{D}_{4} \rightarrow{ }^{7} \mathrm{~F}_{2}$ | ${ }^{7} \mathrm{~F}_{1} \rightarrow{ }^{5} \mathrm{D}_{0}$ | -1596 | 0 | 0 | 0 | $3.0 \times 10^{1}$ | 0 | $3.0 \times 10^{1}$ |
| 3 | ${ }^{5} \mathrm{D}_{3} \rightarrow{ }^{7} \mathrm{~F}_{4}$ | ${ }^{7} \mathrm{~F}_{0} \rightarrow{ }^{5} \mathrm{D}_{3}$ | -1434 | 0 | 0 | 0 | $9.1 \times 10^{2}$ | 0 | $9.1 \times 10^{2}$ |
| 4 | ${ }^{5} \mathrm{D}_{3} \rightarrow{ }^{7} \mathrm{~F}_{4}$ | ${ }^{7} \mathrm{~F}_{1} \rightarrow{ }^{5} \mathrm{D}_{3}$ | -1199 | $1.6 \times 10^{-8}$ | $1.0 \times 10^{-4}$ | $6.1 \times 10^{-1}$ | $1.5 \times 10^{4}$ | 0 | $1.5 \times 10^{4}$ |
| 5 | ${ }^{5} \mathrm{D}_{4} \rightarrow{ }^{7} \mathrm{~F}_{3}$ | ${ }^{7} \mathrm{~F}_{0} \rightarrow{ }^{5} \mathrm{D}_{0}$ | -1143 | $3.6 \times 10^{-10}$ | $3.0 \times 10^{-6}$ | $4.3 \times 10^{-2}$ | $6.6 \times 10^{4}$ | 0 | $6.6 \times 10^{4}$ |
| 6 | ${ }^{5} \mathrm{D}_{3} \rightarrow{ }^{7} \mathrm{~F}_{5}$ | ${ }^{7} \mathrm{~F}_{0} \rightarrow{ }^{5} \mathrm{~L}_{6}$ | -1137 | $9.3 \times 10^{-5}$ | $3.6 \times 10^{-2}$ | 0 | $7.1 \times 10^{4}$ | 0 | $7.1 \times 10^{4}$ |
| 7 | ${ }^{5} \mathrm{D}_{4} \rightarrow{ }^{7} \mathrm{~F}_{6}$ | ${ }^{7} \mathrm{~F}_{0} \rightarrow{ }^{5} \mathrm{D}_{2}$ | -1039 | $1.7 \times 10^{-7}$ | $1.1 \times 10^{-3}$ | 7.0 | $2.6 \times 10^{5}$ | 0 | $2.6 \times 10^{5}$ |
| 8 | ${ }^{5} \mathrm{D}_{4} \rightarrow{ }^{7} \mathrm{~F}_{3}$ | ${ }^{7} \mathrm{~F}_{1} \rightarrow{ }^{5} \mathrm{D}_{0}$ | -908 | 0 | 0 | 0 | $6.2 \times 10^{5}$ | $1.1 \times 10^{-3}$ | $6.2 \times 10^{5}$ |
| 9 | ${ }^{5} \mathrm{D}_{3} \rightarrow{ }^{7} \mathrm{~F}_{0}$ | ${ }^{7} \mathrm{~F}_{0} \rightarrow{ }^{5} \mathrm{D}_{2}$ | -907 | 0 | 0 | 0 | $1.3 \times 10^{6}$ | 0 | $1.3 \times 10^{6}$ |
| 10 | ${ }^{5} \mathrm{D}_{3} \rightarrow{ }^{7} \mathrm{~F}_{5}$ | ${ }^{7} \mathrm{~F}_{1} \rightarrow{ }^{5} \mathrm{~L}_{6}$ | -902 | $1.1 \times 10^{-5}$ | $4.3 \times 10^{-3}$ | 0 | $6.7 \times 10^{5}$ | 0 | $6.7 \times 10^{5}$ |
| 11 | ${ }^{5} \mathrm{D}_{4} \rightarrow{ }^{7} \mathrm{~F}_{6}$ | ${ }^{7} \mathrm{~F}_{1} \rightarrow{ }^{5} \mathrm{D}_{2}$ | -804 | $5.5 \times 10^{-8}$ | $3.5 \times 10^{-4}$ | 2.3 | $2.0 \times 10^{6}$ | 0 | $2.0 \times 10^{6}$ |
| 12 | ${ }^{5} \mathrm{D}_{3} \rightarrow{ }^{7} \mathrm{~F}_{1}$ | ${ }^{7} \mathrm{~F}_{0} \rightarrow{ }^{5} \mathrm{D}_{2}$ | -684 | $6.6 \times 10^{-6}$ | $5.1 \times 10^{-2}$ | $6.4 \times 10^{2}$ | $1.5 \times 10^{7}$ | 0 | $1.5 \times 10^{7}$ |
| 13 | ${ }^{5} \mathrm{D}_{3} \rightarrow{ }^{7} \mathrm{~F}_{0}$ | ${ }^{7} \mathrm{~F}_{1} \rightarrow{ }^{5} \mathrm{D}_{2}$ | -672 | 0 | 0 | 0 | $8.1 \times 10^{6}$ | 0 | $8.1 \times 10^{6}$ |
| 14 | ${ }^{5} \mathrm{D}_{4} \rightarrow{ }^{7} \mathrm{~F}_{5}$ | ${ }^{7} \mathrm{~F}_{0} \rightarrow{ }^{5} \mathrm{D}_{1}$ | -631 | 0 | 0 | 0 | $2.5 \times 10^{7}$ | $1.2 \times 10^{-3}$ | $2.5 \times 10^{7}$ |
| 15 | ${ }^{5} \mathrm{D}_{3} \rightarrow{ }^{7} \mathrm{~F}_{1}$ | ${ }^{7} \mathrm{~F}_{1} \rightarrow{ }^{5} \mathrm{D}_{2}$ | -449 | $1.1 \times 10^{-6}$ | $8.8 \times 10^{-3}$ | $1.1 \times 10^{2}$ | $6.2 \times 10^{7}$ | 0 | $6.2 \times 10^{7}$ |
| 16 | ${ }^{5} \mathrm{D}_{3} \rightarrow{ }^{7} \mathrm{~F}_{2}$ | ${ }^{7} \mathrm{~F}_{0} \rightarrow{ }^{5} \mathrm{D}_{2}$ | -229 | $5.0 \times 10^{-4}$ | 3.5 | $3.6 \times 10^{4}$ | $6.6 \times 10^{8}$ | 0 | $6.6 \times 10^{8}$ |
| 17 | ${ }^{5} \mathrm{D}_{3} \rightarrow{ }^{7} \mathrm{~F}_{5}$ | ${ }^{7} \mathrm{~F}_{0} \rightarrow{ }^{5} \mathrm{D}_{3}$ | -167 | $1.3 \times 10^{-5}$ | $7.0 \times 10^{-2}$ | $1.9 \times 10^{2}$ | $9.7 \times 10^{8}$ | 0 | $9.7 \times 10^{8}$ |
| 18 | ${ }^{5} \mathrm{D}_{4} \rightarrow{ }^{7} \mathrm{~F}_{4}$ | ${ }^{7} \mathrm{~F}_{0} \rightarrow{ }^{5} \mathrm{D}_{0}$ | -164 | 0 | 0 | 0 | $9.9 \times 10^{8}$ | 0 | $9.9 \times 10^{8}$ |
| 19 | ${ }^{5} \mathrm{D}_{3} \rightarrow{ }^{7} \mathrm{~F}_{6}$ | ${ }^{7} \mathrm{~F}_{0} \rightarrow{ }^{5} \mathrm{G}_{2}$ | -156 | $4.7 \times 10^{-4}$ | 2.5 | 0 | $1.0 \times 10^{9}$ | 0 | $1.0 \times 10^{9}$ |
| 20 | ${ }^{5} \mathrm{D}_{3} \rightarrow{ }^{7} \mathrm{~F}_{6}$ | ${ }^{7} \mathrm{~F}_{0} \rightarrow{ }^{5} \mathrm{~L}_{7}$ | -121 | 0 | 0 | 0 | $1.3 \times 10^{9}$ | 0 | $1.3 \times 10^{9}$ |
| 21 | ${ }^{5} \mathrm{D}_{3} \rightarrow{ }^{7} \mathrm{~F}_{2}$ | ${ }^{7} \mathrm{~F}_{1} \rightarrow{ }^{5} \mathrm{D}_{2}$ | 6 | $3.6 \times 10^{-5}$ | $2.6 \times 10^{-1}$ | $2.6 \times 10^{3}$ | $1.2 \times 10^{9}$ | $1.9 \times 10^{-2}$ | $1.2 \times 10^{9}$ |
| 22 | ${ }^{5} \mathrm{D}_{4} \rightarrow{ }^{7} \mathrm{~F}_{5}$ | ${ }^{7} \mathrm{~F}_{1} \rightarrow{ }^{5} \mathrm{D}_{1}$ | 15 | $3.3 \times 10^{-3}$ | $3.0 \times 10^{1}$ | $5.1 \times 10^{5}$ | $1.2 \times 10^{9}$ | $3.6 \times 10^{-3}$ | $1.2 \times 10^{9}$ |
| 23 | ${ }^{5} \mathrm{D}_{3} \rightarrow{ }^{7} \mathrm{~F}_{5}$ | ${ }^{7} \mathrm{~F}_{1} \rightarrow{ }^{5} \mathrm{D}_{3}$ | 68 | $1.4 \times 10^{-3}$ | 1.8 | $3.7 \times 10^{3}$ | $1.1 \times 10^{9}$ | 0 | $1.1 \times 10^{9}$ |
| 24 | ${ }^{5} \mathrm{D}_{4} \rightarrow{ }^{7} \mathrm{~F}_{4}$ | ${ }^{7} \mathrm{~F}_{1} \rightarrow{ }^{5} \mathrm{D}_{0}$ | 71 | 0 | 0 | 0 | $1.1 \times 10^{9}$ | $1.8 \times 10^{-1}$ | $1.1 \times 10^{9}$ |
| 25 | ${ }^{5} \mathrm{D}_{3} \rightarrow{ }^{7} \mathrm{~F}_{6}$ | ${ }^{7} \mathrm{~F}_{1} \rightarrow{ }^{5} \mathrm{G}_{2}$ | 79 | $1.7 \times 10^{-4}$ | $8.9 \times 10^{-1}$ | 0 | $1.1 \times 10^{9}$ | 0 | $1.1 \times 10^{9}$ |
| 26 | ${ }^{5} \mathrm{D}_{3} \rightarrow{ }^{7} \mathrm{~F}_{6}$ | ${ }^{7} \mathrm{~F}_{1} \rightarrow{ }^{5} \mathrm{~L}_{7}$ | 114 | $1.7 \times 10^{-2}$ | 0 | 0 | $1.1 \times 10^{9}$ | 0 | $1.1 \times 10^{9}$ |
| 27 | ${ }^{5} \mathrm{D}_{3} \rightarrow{ }^{7} \mathrm{~F}_{3}$ | ${ }^{7} \mathrm{~F}_{0} \rightarrow{ }^{5} \mathrm{D}_{2}$ | 459 | $3.2 \times 10^{-4}$ | 2.4 | $2.9 \times 10^{4}$ | $1.1 \times 10^{9}$ | 0 | $1.1 \times 10^{9}$ |
| 28 | ${ }^{5} \mathrm{D}_{3} \rightarrow{ }^{7} \mathrm{~F}_{3}$ | ${ }^{7} \mathrm{~F}_{1} \rightarrow{ }^{5} \mathrm{D}_{2}$ | 694 | $2.2 \times 10^{-6}$ | $1.7 \times 10^{-2}$ | $2.0 \times 10^{2}$ | $1.8 \times 10^{8}$ | 0 | $1.8 \times 10^{8}$ |
| 29 | ${ }^{5} \mathrm{D}_{3} \rightarrow{ }^{7} \mathrm{~F}_{6}$ | ${ }^{7} \mathrm{~F}_{0} \rightarrow{ }^{5} \mathrm{~L}_{6}$ | 911 | $6.1 \times 10^{-2}$ | 0 | 0 | $9.9 \times 10^{7}$ | 0 | $9.9 \times 10^{7}$ |
| 30 | ${ }^{5} \mathrm{D}_{4} \rightarrow{ }^{7} \mathrm{~F}_{5}$ | ${ }^{7} \mathrm{~F}_{0} \rightarrow{ }^{5} \mathrm{D}_{0}$ | 1103 | $6.1 \times 10^{-7}$ | $5.6 \times 10^{-3}$ | $9.5 \times 10^{1}$ | $2.2 \times 10^{7}$ | 0 | $2.2 \times 10^{7}$ |
| 31 | ${ }^{5} \mathrm{D}_{3} \rightarrow{ }^{7} \mathrm{~F}_{6}$ | ${ }^{7} \mathrm{~F}_{1} \rightarrow{ }^{5} \mathrm{~L}_{6}$ | 1146 | $5.7 \times 10^{-5}$ | 0 | 0 | $7.4 \times 10^{6}$ | 0 | $7.4 \times 10^{6}$ |
| 32 | ${ }^{5} \mathrm{D}_{4} \rightarrow{ }^{7} \mathrm{~F}_{5}$ | ${ }^{7} \mathrm{~F}_{1} \rightarrow{ }^{5} \mathrm{D}_{0}$ | 1338 | 0 | 0 | 0 | $1.2 \times 10^{6}$ | 0 | $1.2 \times 10^{6}$ |
| 33 | ${ }^{5} \mathrm{D}_{4} \rightarrow{ }^{7} \mathrm{~F}_{6}$ | ${ }^{7} \mathrm{~F}_{0} \rightarrow{ }^{5} \mathrm{D}_{1}$ | 1417 | 0 | 0 | 0 | $1.1 \times 10^{6}$ | 0 | $1.1 \times 10^{6}$ |
| 34 | ${ }^{5} \mathrm{D}_{3} \rightarrow{ }^{7} \mathrm{~F}_{4}$ | ${ }^{7} \mathrm{~F}_{0} \rightarrow{ }^{5} \mathrm{D}_{2}$ | 1438 | $1.0 \times 10^{-6}$ | $1.1 \times 10^{-2}$ | $2.1 \times 10^{2}$ | $8.4 \times 10^{5}$ | 0 | $8.4 \times 10^{5}$ |
| 35 | ${ }^{5} \mathrm{D}_{3} \rightarrow{ }^{7} \mathrm{~F}_{0}$ | ${ }^{7} \mathrm{~F}_{0} \rightarrow{ }^{5} \mathrm{D}_{1}$ | 1549 | 0 | 0 | 0 | $2.3 \times 10^{5}$ | 0 | $2.3 \times 10^{5}$ |
| 36 | ${ }^{5} \mathrm{D}_{4} \rightarrow{ }^{7} \mathrm{~F}_{6}$ | ${ }^{7} \mathrm{~F}_{1} \rightarrow{ }^{5} \mathrm{D}_{1}$ | 1652 | $2.1 \times 10^{-8}$ | $1.3 \times 10^{-4}$ | $8.9 \times 10^{-1}$ | $3.2 \times 10^{4}$ | 0 | $3.2 \times 10^{4}$ |
| 37 | ${ }^{5} \mathrm{D}_{3} \rightarrow{ }^{7} \mathrm{~F}_{4}$ | ${ }^{7} \mathrm{~F}_{1} \rightarrow{ }^{5} \mathrm{D}_{2}$ | 1673 | $1.2 \times 10^{-9}$ | $1.3 \times 10^{-5}$ | $2.5 \times 10^{-1}$ | $2.4 \times 10^{4}$ | 0 | $2.4 \times 10^{4}$ |
| 38 | ${ }^{5} \mathrm{D}_{3} \rightarrow{ }^{7} \mathrm{~F}_{1}$ | ${ }^{7} \mathrm{~F}_{0} \rightarrow{ }^{5} \mathrm{D}_{1}$ | 1772 | 0 | 0 | 0 | $1.4 \times 10^{4}$ | 0 | $1.4 \times 10^{4}$ |
| 39 | ${ }^{5} \mathrm{D}_{3} \rightarrow{ }^{7} \mathrm{~F}_{0}$ | ${ }^{7} \mathrm{~F}_{1} \rightarrow{ }^{5} \mathrm{D}_{1}$ | 1784 | 0 | 0 | 0 | $5.5 \times 10^{3}$ | 0 | $5.5 \times 10^{3}$ |
| 40 | ${ }^{5} \mathrm{D}_{3} \rightarrow{ }^{7} \mathrm{~F}_{6}$ | ${ }^{7} \mathrm{~F}_{0} \rightarrow{ }^{5} \mathrm{D}_{3}$ | 1881 | 0 | 0 | 0 | $2.9 \times 10^{3}$ | 0 | $2.9 \times 10^{3}$ |
| 41 | ${ }^{5} \mathrm{D}_{3} \rightarrow{ }^{7} \mathrm{~F}_{1}$ | ${ }^{7} \mathrm{~F}_{1} \rightarrow{ }^{5} \mathrm{D}_{1}$ | 2007 | $9.8 \times 10^{-11}$ | $7.6 \times 10^{-7}$ | $9.4 \times 10^{-3}$ | $2.1 \times 10^{2}$ | 0 | $2.1 \times 10^{2}$ |
| 42 | ${ }^{5} \mathrm{D}_{3} \rightarrow{ }^{7} \mathrm{~F}_{6}$ | ${ }^{7} \mathrm{~F}_{1} \rightarrow{ }^{5} \mathrm{D}_{3}$ | 2116 | $2.2 \times 10^{-11}$ | $2.0 \times 10^{-8}$ | 0 | $3.8 \times 10^{1}$ | 0 | $3.8 \times 10^{1}$ |
| 43 | ${ }^{5} \mathrm{D}_{3} \rightarrow{ }^{7} \mathrm{~F}_{2}$ | ${ }^{7} \mathrm{~F}_{0} \rightarrow{ }^{5} \mathrm{D}_{1}$ | 2227 | 0 | 0 | 0 | $1.2 \times 10^{1}$ | 0 | $1.2 \times 10^{1}$ |
| 44 | ${ }^{5} \mathrm{D}_{3} \rightarrow{ }^{7} \mathrm{~F}_{2}$ | ${ }^{7} \mathrm{~F}_{1} \rightarrow{ }^{5} \mathrm{D}_{1}$ | 2462 | $6.6 \times 10^{-14}$ | $4.7 \times 10^{-10}$ | $4.8 \times 10^{-6}$ | $8.4 \times 10^{-2}$ | 0 | $8.4 \times 10^{-2}$ |
| 45 | ${ }^{5} \mathrm{D}_{3} \rightarrow{ }^{7} \mathrm{~F}_{5}$ | ${ }^{7} \mathrm{~F}_{0} \rightarrow{ }^{5} \mathrm{D}_{2}$ | 2705 | $1.8 \times 10^{-15}$ | $1.0 \times 10^{-11}$ | $2.7 \times 10^{-8}$ | $1.4 \times 10^{-3}$ | 0 | $1.4 \times 10^{-3}$ |
| 46 | ${ }^{5} \mathrm{D}_{3} \rightarrow{ }^{7} \mathrm{~F}_{3}$ | ${ }^{7} \mathrm{~F}_{0} \rightarrow{ }^{5} \mathrm{D}_{1}$ | 2915 | 0 | 0 | 0 | $1.5 \times 10^{-5}$ | 0 | $1.5 \times 10^{-5}$ |

$W_{\text {total }}^{f}=\sum W^{f}=$

Table S4. $\mathrm{Eu}^{3+}$ to $\mathrm{Tb}^{3+}$ (backward) energy transfer pathways for $R=3.44 \AA$ in both MSN-1 and MSN-2 at 300 K .

| Path. | From | To | $\delta$ | $W_{d-d}$ | $W_{d-q}$ | $W_{q-q}$ | $W_{e x}$ | $W_{m d-m d}$ | $W^{b}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | ${ }^{5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{6}$ | ${ }^{7} \mathrm{~F}_{6} \rightarrow{ }^{5} \mathrm{D}_{3}$ | -13850 | 0 | 0 | 0 | 0 | 0 | 0 |
| 2 | ${ }^{5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{5}$ | ${ }^{7} \mathrm{~F}_{6} \rightarrow{ }^{5} \mathrm{D}_{3}$ | -12792 | 0 | 0 | 0 | $1.6 \times 10^{-291}$ | 0 | $1.6 \times 10^{-291}$ |
| 3 | ${ }^{5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{6}$ | ${ }^{7} \mathrm{~F}_{5} \rightarrow{ }^{5} \mathrm{D}_{3}$ | -11802 | $7.1 \times 10^{-262}$ | $1.8 \times 10^{-259}$ | 0 | $1.1 \times 10^{-249}$ | 0 | $1.1 \times 10^{-249}$ |
| 4 | ${ }^{5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{4}$ | ${ }^{7} \mathrm{~F}_{6} \rightarrow{ }^{5} \mathrm{D}_{3}$ | -11766 | $4.8 \times 10^{-259}$ | 0 | 0 | $3.0 \times 10^{-247}$ | 0 | $3.0 \times 10^{-247}$ |
| 5 | ${ }^{5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{5}$ | ${ }^{7} \mathrm{~F}_{5} \rightarrow{ }^{5} \mathrm{D}_{3}$ | -10744 | 0 | 0 | 0 | $1.3 \times 10^{-207}$ | 0 | $1.3 \times 10^{-207}$ |
| 6 | ${ }^{5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{3}$ | ${ }^{7} \mathrm{~F}_{6} \rightarrow{ }^{5} \mathrm{D}_{3}$ | -10609 | 0 | 0 | 0 | $1.5 \times 10^{-201}$ | 0 | $1.5 \times 10^{-201}$ |
| 7 | ${ }^{5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{2}$ | ${ }^{7} \mathrm{~F}_{6} \rightarrow{ }^{5} \mathrm{D}_{3}$ | -9969 | $6.4 \times 10^{-190}$ | $3.8 \times 10^{-186}$ | 0 | $3.5 \times 10^{-178}$ | 0 | $3.5 \times 10^{-178}$ |
| 8 | ${ }^{5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{4}$ | ${ }^{7} \mathrm{~F}_{5} \rightarrow{ }^{5} \mathrm{D}_{3}$ | -9718 | $9.0 \times 10^{-182}$ | $2.3 \times 10^{-179}$ | 0 | $2.4 \times 10^{-170}$ | 0 | $2.4 \times 10^{-170}$ |
| 9 | ${ }^{5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{1}$ | ${ }^{7} \mathrm{~F}_{6} \rightarrow{ }^{5} \mathrm{D}_{3}$ | -9178 | 0 | 0 | 0 | $3.3 \times 10^{-151}$ | 0 | $3.3 \times 10^{-151}$ |
| 10 | ${ }^{5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{0}$ | ${ }^{7} \mathrm{~F}_{6} \rightarrow{ }^{5} \mathrm{D}_{3}$ | -8943 | 0 | 0 | 0 | $1.3 \times 10^{-143}$ | 0 | $1.3 \times 10^{-143}$ |
| 11 | ${ }^{5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{3}$ | ${ }^{7} \mathrm{~F}_{5} \rightarrow{ }^{5} \mathrm{D}_{3}$ | -8561 | 0 | 0 | 0 | $1.4 \times 10^{-132}$ | 0 | $1.4 \times 10^{-132}$ |
| 12 | ${ }^{5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{6}$ | ${ }^{7} \mathrm{~F}_{6} \rightarrow{ }^{5} \mathrm{D}_{4}$ | -8058 | $4.8 \times 10^{-129}$ | $3.5 \times 10^{-126}$ | 0 | $1.4 \times 10^{-116}$ | 0 | $1.4 \times 10^{-116}$ |
| 13 | ${ }^{5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{2}$ | ${ }^{7} \mathrm{~F}_{5} \rightarrow{ }^{5} \mathrm{D}_{3}$ | -7921 | $5.9 \times 10^{-125}$ | $3.6 \times 10^{-121}$ | $6.6 \times 10^{-118}$ | $1.3 \times 10^{-113}$ | 0 | $1.3 \times 10^{-113}$ |
| 14 | ${ }^{5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{1}$ | ${ }^{7} \mathrm{~F}_{5} \rightarrow{ }^{5} \mathrm{D}_{3}$ | -7130 | 0 | 0 | 0 | $4.8 \times 10^{-92}$ | 0 | $4.8 \times 10^{-92}$ |
| 15 | ${ }^{5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{5}$ | ${ }^{7} \mathrm{~F}_{6} \rightarrow{ }^{5} \mathrm{D}_{4}$ | -7000 | 0 | 0 | 0 | $9.6 \times 10^{-88}$ | 0 | $9.6 \times 10^{-88}$ |
| 16 | ${ }^{5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{0}$ | ${ }^{7} \mathrm{~F}_{5} \rightarrow{ }^{5} \mathrm{D}_{3}$ | -6895 | 0 | 0 | 0 | $4.8 \times 10^{-86}$ | 0 | $4.8 \times 10^{-86}$ |
| 17 | ${ }^{5} \mathrm{D}_{1} \rightarrow{ }^{7} \mathrm{~F}_{3}$ | ${ }^{7} \mathrm{~F}_{5} \rightarrow{ }^{5} \mathrm{D}_{3}$ | -6827 | $6.8 \times 10^{-96}$ | $2.7 \times 10^{-92}$ | $4.7 \times 10^{-89}$ | $2.4 \times 10^{-84}$ | 0 | $2.4 \times 10^{-84}$ |
| 18 | ${ }^{5} \mathrm{D}_{1} \rightarrow{ }^{7} \mathrm{~F}_{6}$ | ${ }^{7} \mathrm{~F}_{6} \rightarrow{ }^{5} \mathrm{D}_{4}$ | -6324 | 0 | 0 | 0 | $2.8 \times 10^{-71}$ | 0 | $2.8 \times 10^{-71}$ |
| 19 | ${ }^{5} \mathrm{D}_{1} \rightarrow{ }^{7} \mathrm{~F}_{2}$ | ${ }^{7} \mathrm{~F}_{5} \rightarrow{ }^{5} \mathrm{D}_{3}$ | -6187 | 0 | 0 | 0 | $4.5 \times 10^{-69}$ | 0 | $4.5 \times 10^{-69}$ |
| 20 | ${ }^{5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{6}$ | ${ }^{7} \mathrm{~F}_{5} \rightarrow{ }^{5} \mathrm{D}_{4}$ | -6010 | $6.4 \times 10^{-77}$ | $2.0 \times 10^{-73}$ | 0 | $4.2 \times 10^{-65}$ | 0 | $4.2 \times 10^{-65}$ |
| 21 | ${ }^{5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{4}$ | ${ }^{7} \mathrm{~F}_{6} \rightarrow{ }^{5} \mathrm{D}_{4}$ | -5974 | $4.9 \times 10^{-75}$ | $3.5 \times 10^{-72}$ | 0 | $2.4 \times 10^{-63}$ | 0 | $2.4 \times 10^{-63}$ |
| 22 | ${ }^{5} \mathrm{D}_{1} \rightarrow{ }^{7} \mathrm{~F}_{1}$ | ${ }^{7} \mathrm{~F}_{5} \rightarrow{ }^{5} \mathrm{D}_{3}$ | -5396 | $4.8 \times 10^{-64}$ | $2.9 \times 10^{-60}$ | $5.3 \times 10^{-57}$ | $4.2 \times 10^{-52}$ | 0 | $4.2 \times 10^{-52}$ |
| 23 | ${ }^{5} \mathrm{D}_{1} \rightarrow{ }^{7} \mathrm{~F}_{5}$ | ${ }^{7} \mathrm{~F}_{6} \rightarrow{ }^{5} \mathrm{D}_{4}$ | -5266 | 0 | 0 | 0 | $1.5 \times 10^{-48}$ | 0 | $1.5 \times 10^{-48}$ |
| 24 | ${ }^{5} \mathrm{D}_{1} \rightarrow{ }^{7} \mathrm{~F}_{0}$ | ${ }^{7} \mathrm{~F}_{5} \rightarrow{ }^{5} \mathrm{D}_{3}$ | -5161 | 0 | 0 | 0 | $1.8 \times 10^{-47}$ | 0 | $1.8 \times 10^{-47}$ |
| 25 | ${ }^{5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{5}$ | ${ }^{7} \mathrm{~F}_{5} \rightarrow{ }^{5} \mathrm{D}_{4}$ | -4952 | 0 | 0 | 0 | $1.7 \times 10^{-43}$ | 0 | $1.7 \times 10^{-43}$ |
| 26 | ${ }^{5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{3}$ | ${ }^{7} \mathrm{~F}_{6} \rightarrow{ }^{5} \mathrm{D}_{4}$ | -4817 | 0 | 0 | 0 | $4.7 \times 10^{-40}$ | 0 | $4.7 \times 10^{-40}$ |
| 27 | ${ }^{5} \mathrm{D}_{1} \rightarrow{ }^{7} \mathrm{~F}_{6}$ | ${ }^{7} \mathrm{~F}_{5} \rightarrow{ }^{5} \mathrm{D}_{4}$ | -4276 | 0 | 0 | 0 | $1.2 \times 10^{-31}$ | 0 | $1.2 \times 10^{-31}$ |
| 28 | ${ }^{5} \mathrm{D}_{1} \rightarrow{ }^{7} \mathrm{~F}_{4}$ | ${ }^{7} \mathrm{~F}_{6} \rightarrow{ }^{5} \mathrm{D}_{4}$ | -4240 | $3.4 \times 10^{-42}$ | $2.4 \times 10^{-39}$ | 0 | $4.1 \times 10^{-30}$ | 0 | $4.1 \times 10^{-30}$ |
| 29 | ${ }^{5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{2}$ | ${ }^{7} \mathrm{~F}_{6} \rightarrow{ }^{5} \mathrm{D}_{4}$ | -4177 | $1.0 \times 10^{-40}$ | $6.7 \times 10^{-37}$ | $3.2 \times 10^{-33}$ | $4.2 \times 10^{-29}$ | 0 | $4.2 \times 10^{-29}$ |
| 30 | ${ }^{5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{4}$ | ${ }^{7} \mathrm{~F}_{5} \rightarrow{ }^{5} \mathrm{D}_{4}$ | -3926 | $3.5 \times 10^{-37}$ | $1.1 \times 10^{-33}$ | 0 | $4.0 \times 10^{-26}$ | 0 | $4.0 \times 10^{-26}$ |
| 31 | ${ }^{5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{1}$ | ${ }^{7} \mathrm{~F}_{6} \rightarrow{ }^{5} \mathrm{D}_{4}$ | -3386 | 0 | 0 | 0 | $1.9 \times 10^{-17}$ | 0 | $1.9 \times 10^{-17}$ |
| 32 | ${ }^{5} \mathrm{D}_{1} \rightarrow{ }^{7} \mathrm{~F}_{5}$ | ${ }^{7} \mathrm{~F}_{5} \rightarrow{ }^{5} \mathrm{D}_{4}$ | -3218 | 0 | 0 | 0 | $3.4 \times 10^{-16}$ | 0 | $3.4 \times 10^{-16}$ |
| 33 | ${ }^{5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{0}$ | ${ }^{7} \mathrm{~F}_{6} \rightarrow{ }^{5} \mathrm{D}_{4}$ | -3151 | 0 | 0 | 0 | $2.2 \times 10^{-14}$ | 0 | $2.2 \times 10^{-14}$ |
| 34 | ${ }^{5} \mathrm{D}_{1} \rightarrow{ }^{7} \mathrm{~F}_{3}$ | ${ }^{7} \mathrm{~F}_{6} \rightarrow{ }^{5} \mathrm{D}_{4}$ | -3083 | $2.3 \times 10^{-25}$ | $1.0 \times 10^{-21}$ | $4.6 \times 10^{-18}$ | $1.5 \times 10^{-13}$ | 0 | $1.5 \times 10^{-13}$ |
| 35 | ${ }^{5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{3}$ | ${ }^{7} \mathrm{~F}_{5} \rightarrow{ }^{5} \mathrm{D}_{4}$ | -2769 | 0 | 0 | 0 | $9.2 \times 10^{-11}$ | 0 | $9.2 \times 10^{-11}$ |
| 36 | ${ }^{5} \mathrm{D}_{1} \rightarrow{ }^{7} \mathrm{~F}_{2}$ | ${ }^{7} \mathrm{~F}_{6} \rightarrow{ }^{5} \mathrm{D}_{4}$ | -2443 | 0 | 0 | 0 | $2.7 \times 10^{-6}$ | 0 | $2.7 \times 10^{-6}$ |
| 37 | ${ }^{5} \mathrm{D}_{1} \rightarrow{ }^{7} \mathrm{~F}_{4}$ | ${ }^{7} \mathrm{~F}_{5} \rightarrow{ }^{5} \mathrm{D}_{4}$ | -2192 | $3.2 \times 10^{-16}$ | $9.9 \times 10^{-13}$ | 0 | $8.9 \times 10^{-5}$ | 0 | $8.9 \times 10^{-5}$ |
| 38 | ${ }^{5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{2}$ | ${ }^{7} \mathrm{~F}_{5} \rightarrow{ }^{5} \mathrm{D}_{4}$ | -2129 | $3.5 \times 10^{-15}$ | $3.2 \times 10^{-11}$ | $4.8 \times 10^{-7}$ | $3.5 \times 10^{-4}$ | 0 | $3.5 \times 10^{-4}$ |
| 39 | ${ }^{5} \mathrm{D}_{1} \rightarrow{ }^{7} \mathrm{~F}_{1}$ | ${ }^{7} \mathrm{~F}_{6} \rightarrow{ }^{5} \mathrm{D}_{4}$ | -1652 | $2.0 \times 10^{-11}$ | $1.3 \times 10^{-7}$ | $6.2 \times 10^{-4}$ | $3.2 \times 10^{1}$ | 0 | $3.2 \times 10^{1}$ |
| 40 | ${ }^{5} \mathrm{D}_{1} \rightarrow{ }^{7} \mathrm{~F}_{0}$ | ${ }^{7} \mathrm{~F}_{6} \rightarrow{ }^{5} \mathrm{D}_{4}$ | -1417 | 0 | 0 | 0 | $1.6 \times 10^{3}$ | 0 | $1.6 \times 10^{3}$ |
| 41 | ${ }^{5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{1}$ | ${ }^{7} \mathrm{~F}_{5} \rightarrow{ }^{5} \mathrm{D}_{4}$ | -1338 | 0 | 0 | 0 | $5.9 \times 10^{2}$ | $9.9 \times 10^{-8}$ | $5.9 \times 10^{2}$ |
| 42 | ${ }^{5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{0}$ | ${ }^{7} \mathrm{~F}_{5} \rightarrow{ }^{5} \mathrm{D}_{4}$ | -1103 | 0 | 0 | 0 | $1.7 \times 10^{4}$ | 0 | $1.7 \times 10^{4}$ |
| 43 | ${ }^{5} \mathrm{D}_{1} \rightarrow{ }^{7} \mathrm{~F}_{3}$ | ${ }^{7} \mathrm{~F}_{5} \rightarrow{ }^{5} \mathrm{D}_{4}$ | -1035 | $2.6 \times 10^{-7}$ | $1.8 \times 10^{-3}$ | $2.2 \times 10^{1}$ | $4.0 \times 10^{4}$ | 0 | $4.0 \times 10^{4}$ |
| 44 | ${ }^{5} \mathrm{D}_{1} \rightarrow{ }^{7} \mathrm{~F}_{2}$ | ${ }^{7} \mathrm{~F}_{5} \rightarrow{ }^{5} \mathrm{D}_{4}$ | -395 | 0 | 0 | 0 | $2.9 \times 10^{7}$ | $1.7 \times 10^{-1}$ | $2.9 \times 10^{7}$ |
| 45 | ${ }^{5} \mathrm{D}_{1} \rightarrow{ }^{7} \mathrm{~F}_{1}$ | ${ }^{7} \mathrm{~F}_{5} \rightarrow{ }^{5} \mathrm{D}_{4}$ | -15 | $8.7 \times 10^{-4}$ | 7.9 | $1.2 \times 10^{5}$ | $3.3 \times 10^{8}$ | $8.4 \times 10^{-4}$ | $3.3 \times 10^{8}$ |
| 46 | ${ }^{5} \mathrm{D}_{1} \rightarrow{ }^{7} \mathrm{~F}_{0}$ | ${ }^{7} \mathrm{~F}_{5} \rightarrow{ }^{5} \mathrm{D}_{4}$ | 631 | 0 | 0 | 0 | $7.7 \times 10^{7}$ | $5.9 \times 10^{-3}$ | $7.7 \times 10^{7}$ |

$W_{\text {total }}^{b}=\sum W^{b}=$

Table S5. Tb-Eu distances $(\mathrm{R})$ and the occurrence coefficients $\left(\mathrm{O}_{\mathrm{i}}(\mathrm{x})\right.$ and $\mathrm{O}_{\mathrm{i}}(1-\mathrm{x})$ ) with respect to the distances order (i). x is the fraction of $\mathrm{Eu}^{3+}$ amount while $1-\mathrm{x}$ represents the $\mathrm{Tb}^{3+}$ amount.

|  |  | $\mathrm{Tb}-\mathrm{Eu}$ distance order $(i)$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{1 1}$ |
| $(x=0.05)$ | $R_{i}(\AA)$ | 3.62 | 3.65 | 3.73 | 3.74 | 5.11 | 9.92 |
|  | $O_{i}(x)$ | 0.83 | 0.87 | 0.82 | 0.83 | 0.39 | 0.79 |
|  | $O_{i}(1-x)$ | 0.09 | 0.08 | 0.08 | 0.10 | 0.04 | 0.04 |
| $(x=0.10)$ | $R_{i}(\AA)$ | 3.62 | 3.65 | 3.73 | 3.74 | 5.11 | 9.92 |
|  | $O_{i}(x)$ | 0.84 | 0.79 | 0.65 | 0.83 | 0.39 | 0.45 |
|  | $O_{i}(1-x)$ | 0.09 | 0.09 | 0.07 | 0.09 | 0.02 | 0.05 |
| $\mathbf{~ M S N - 1}$ | $R_{i}(\AA)$ | 3.44 | 3.44 | 3.52 | 3.55 | 5.06 | 9.92 |
|  | $O_{i}(x)$ | 0.83 | 0.87 | 0.82 | 0.83 | 0.39 | 0.79 |
|  | $O_{i}(1-x)$ | 0.09 | 0.08 | 0.08 | 0.10 | 0.04 | 0.04 |
| $\mathbf{~ M S N - 2 ~}$ | $R_{i}(\AA)$ | 3.44 | 3.44 | 3.52 | 3.55 | 5.06 | 9.92 |
|  | $O_{i}(x)$ | 0.84 | 0.79 | 0.65 | 0.83 | 0.39 | 0.45 |
|  | $O_{i}(1-x)$ | 0.09 | 0.09 | 0.07 | 0.09 | 0.02 | 0.05 |






Figure S1. Infrared spectra of: a) MSN (black), MSN-1 (red), b) MSN (black), MSN-1 (red), in the $1800-1300 \mathrm{~cm}^{-1}$ window, c) compounds $\mathbf{1}$ (green) and $\mathbf{2}$ (purple), d) compared MSN-2 (red) and 2 (purple) in the $1800-1300 \mathrm{~cm}^{-1}$ window.



Figure S2. Powder XRD patterns of the referenced complex $\left[\mathrm{Tb}_{9}(\mathrm{acac})_{16}\left(\mu_{3}-\mathrm{OH}\right)_{8}\left(\mu_{4}-\mathrm{O}\right)\left(\mu_{4}-\right.\right.$ $\mathrm{OH})] \cdot \mathrm{H}_{2} \mathrm{O}$ (black) (S. Petit, F. Baril-Robert, G. Pilet, C. Reber and D. Luneau, Dalton Trans., 2009, 6809-6815) and complexes 1 (red) and 2 (blue).


Figure S3. ${ }^{29}$ Si CPMAS solid-state NMR of MSN.




Figure S4. ${ }^{13}$ C CPMAS solid-state NMR of MSN. CTA indicates the peaks from the remaining molecules of surfactant and SBS indicates the peaks of the zwitterion.


Figure S5. TEM image of functionalized hybrid silica MSN-2.


Figure S6. $\mathrm{N}_{2}$ adsorption isotherms of: MSN (black), MSN-1 (blue) and MSN-2 (red).


Figure S7. Size distributions for MSN-1 averaged by intensity in water: (a) and in Fetal Bovine Serum (FBS) 10 \%/90 \% high glucose DMEM (b); Scattered light intensity for MSN-1 in water (c) and in FBS 10\%/90 \% high glucose DMEM (d). The decrease in scattered intensity (c) observed within the first hours, followed by stabilization after approximately 10 hours, indicates a process of nanoparticle aggregation and settling in water. After 10 hours, the scattered light intensity remains relatively constant, indicating that the nanoparticles have reached a state of equilibrium. In the $10 \%$ FBS/90\% high glucose DMEM solution, a variation of only $20 \%$ in scattered light intensity was observed during the initial hours, followed by a relatively stable intensity thereafter.


Figure S8. Excitation spectra of MSN-1 monitored at $\lambda_{\text {em }}=545 \mathrm{~nm}$ (green) and 615 nm (red) measured at 77 K in solid state.


Figure S9. a) Excitation spectra of MSN-2 monitored at $\lambda_{\mathrm{em}}=545 \mathrm{~nm}$ (green) and 615 nm (red) measured at 77 K in solid state, and b) Emission spectra of MSN-2 performed with $\lambda_{\mathrm{ex}}=328 \mathrm{~nm}$ at 77 K and at room temperature in the solid state.


Figure S10. a) Excitation spectra of MSN-2 monitored at $\lambda_{\mathrm{em}}=545$ (green) and 615 nm (red) measured at room temperature in solid state, and b) emission spectra of MSN-2 performed with $\lambda_{\text {ex }}=328 \mathrm{~nm}$ at room temperature in the solid state.


Figure S11. a) Excitation spectra of MSN-1 monitored at $\lambda_{\mathrm{em}}=545$ (green) and 615 nm (red) measured at room temperature in water, and b) emission spectra of MSN-1 performed with $\lambda_{\mathrm{ex}}=$ 312 nm at room temperature. * Raman scattering peak of water


Figure S12. a) Excitation spectra of MSN-2 monitored at $\lambda_{\mathrm{em}}=545$ (green) and 615 nm (red) measured at room temperature in water, and b) emission spectra of MSN-2 performed with $\lambda_{\text {ex }}=$ 312 nm at room temperature. * Raman scattering peak of water.


Figure S13. a) Excitation spectra of complex 1 monitored at $\lambda_{\mathrm{em}}=545$ (green) and 615 nm (red) measured at room temperature in solid state, b) Emission spectra of 1 performed with $\lambda_{\mathrm{ex}}=328$ nm at room temperature in solid state. c) Emission spectra of 1 performed with $\lambda_{\mathrm{ex}}=379$ and 487 nm at room temperature in solid state and d) emission spectra of 1 performed with $\lambda_{\text {ex }}=465 \mathrm{~nm}$ at room temperature in solid state.


Figure S14. a) Excitation spectra of 1 monitored at $\lambda_{\mathrm{em}}=545$ (green) and 615 nm (red) measured at 77 K in solid state, b) emission spectra of 1 performed with $\lambda_{\mathrm{ex}}=328 \mathrm{~nm}$ at 77 K in solid state, c) emission spectra of 1 performed with $\lambda_{\mathrm{ex}}=379$ and 487 nm at 77 K in solid state and d) emission spectra of 1 performed with $\lambda_{\mathrm{ex}}=465 \mathrm{~nm}$ at 77 K in solid state.


Figure S15. a) Excitation spectra of 2 monitored at $\lambda_{\mathrm{em}}=545$ (green) and 615 nm (red) measured at room temperature in solid state. b) Emission spectra of 2 performed with $\lambda_{\mathrm{ex}}=328 \mathrm{~nm}$ at room temperature in solid state.


Figure S16. a) Excitation spectra of 2 monitored at $\lambda_{\mathrm{em}}=545$ (green) and 615 nm (red) measured at 77 K in solid state, b) emission spectra of 2 performed with $\lambda_{\mathrm{ex}}=328 \mathrm{~nm}$ at 77 K in solid state.


Figure S17. Pairwise energy transfer rates according to $\mathrm{Tb}-\mathrm{Eu}$ distance for 1, 2, MSN-1, and MSN-2. $W_{\text {total }}^{f}$ and $W_{\text {total }}{ }^{b}$ represent the forward and backward rate, respectively.


Figure S18. a) View of the $20 \times 20 \times 20$ sublattice with a zoom-in, showing the distance between different $\mathrm{Ln}_{9}$ molecules. The shortest distance between $\mathrm{Ln}^{3+}$ ions in two different compounds is $9.92 \AA$. Interionic distances in a single $\mathrm{Ln}_{9}$ compound for compounds $\mathbf{1}$ and 2 (b) and when there are incorporated in MSN-1 and MSN-2 nanoparticles (c).


Figure S19. a) Forward $\left(\mathrm{Tb} \rightarrow \mathrm{Eu},\langle\mathrm{W}\rangle^{\mathrm{f}}\right)$ and b) backward $\left(\mathrm{Eu} \rightarrow \mathrm{Tb},\langle\mathrm{W}\rangle^{\mathrm{b}}\right)$ average energy transfer rates for compounds $\mathbf{1}, \mathbf{2}$, and them inside MSN structures.


Figure S20. Ratio of energy transfer rates inside ( $\langle W\rangle_{i n}$ ) and between two neighboring clusters ( $\langle W\rangle_{\text {out }}$ ) as a function of temperature.


Figure S21. Emission spectra in solid state for: a) MSN-1 and b) MSN-2 at 77 K (black lines) and room temperature (red lines).


Figure S22. LIR between the ${ }^{5} \mathrm{D}_{4} \rightarrow{ }^{7} \mathrm{~F}_{5}\left(\mathrm{~Tb}^{3+}\right)$ and ${ }^{5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{4}\left(\mathrm{Eu}^{3+}\right)$ transitions for thermometry experiments of MSN-1. The solid line represents a second-degree polynomial fitting. Integrated areas: 530-560 nm ( $\left.\mathrm{Tb}^{3+}:{ }^{5} \mathrm{D}_{4} \rightarrow{ }^{7} \mathrm{~F}_{5}\right)$ and $680-715 \mathrm{~nm}\left(\mathrm{Eu}^{3+}:{ }^{5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{4}\right)$. Insert: temperature dependence of $\mathrm{S}_{\mathrm{r}}$. The error bars correspond to the standard error of the mean determined from three consecutive temperature cycles.


Figure S23. a) Emission spectra ( $\lambda_{\text {ex }}=314 \mathrm{~nm}$ ) of MSN-2 at every $5^{\circ} \mathrm{C}$ from 20 to $70{ }^{\circ} \mathrm{C}$ measured in water; and b) corresponding LIR between the emissions at 545 nm and 615 nm ; c) corresponding LIR between the emissions at 545 nm and 700 nm . The red line represents a second-degree polynomial fitting. Integrated areas: 530-560 nm (Tb $\left.{ }^{3+5} \mathrm{D}_{4} \rightarrow{ }^{7} \mathrm{~F}_{5}\right)$ and 604-642 nm $\left(\mathrm{Eu}^{3+}{ }^{5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{2}\right)$ or $680-715 \mathrm{~nm}\left(\mathrm{Eu}^{3+}{ }^{5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{4}\right)$. The error bars correspond to standard error of mean determined from three consecutive temperature cycles.


Figure S24. Relative integrated intensities at 550 nm (green) and 610 nm (red) for MSN-1 in water, normalized to the spectrum measured at time $t=0$, after different periods of exposure to continuous excitation light $\left(\lambda_{e x}=310 \mathrm{~nm}\right)$. Wavelength ranges for integrating areas: $530-560 \mathrm{~nm}$ $\left(\mathrm{Tb}^{3+}:{ }^{5} \mathrm{D}_{4} \rightarrow{ }^{7} \mathrm{~F}_{5}\right)$ and $604-642 \mathrm{~nm}\left(\mathrm{Eu}^{3+}:{ }^{5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{2}\right)$. Insert: Emission spectra of MSN-1 after different periods of exposure to excitation light $\left(\lambda_{\mathrm{ex}}=310 \mathrm{~nm}\right)$ from 0 to 4 hours.


Figure S25. a) Emission spectra ( $\lambda_{\text {ex }}=310 \mathrm{~nm}$ ) of MSN-1 at every $5^{\circ} \mathrm{C}$ from 20 to $70{ }^{\circ} \mathrm{C}$ measured in PBS; and b) corresponding LIR between the emissions at 540 nm and 610 nm ; c) corresponding LIR between the emissions at 545 nm and 700 nm . The red line represents a second-degree polynomial fitting. Integrated areas: 530-560 nm ( $\left.\mathrm{Tb}^{3+5} \mathrm{D}_{4} \rightarrow{ }^{7} \mathrm{~F}_{5}\right)$ and 604-642 nm $\left(\mathrm{Eu}^{3+}{ }^{5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{2}\right)$. The error bars correspond to standard error of mean determined from three consecutive temperature cycles.


Figure S26. Toxicity effect of MSN-1 on human breast cancer (MCF-7) cell line after 3 days of treatment with several concentrations from 0 to $200 \mu \mathrm{~g} \cdot \mathrm{~mL}^{-1}$. Results are presented as mean $\pm$ standard error of the mean (SEM), $(\mathrm{n}=8)$.


Figure S27. TEM image demonstrating the integration of MSN-1 nanoparticles inside the MCF-7 living cells after 24 h of incubation with $100 \mathrm{mg} \cdot \mathrm{mL}^{-1}$ of nanoparticles. Arrow indicates the position of nanoparticles.


Figure S28. Emission spectrum of the suspension of Y-29 cell line treated with $100 \mu \mathrm{~g} \cdot \mathrm{~mL}^{-1}$ of MSN-1 for 24 h in PBS performed with $\lambda_{\mathrm{ex}}=310 \mathrm{~nm}$ at room temperature.

## 2. Theoretical calculations

### 2.1. Structural and Judd-Ofelt analysis

There are nine positions in which the $\mathrm{Ln}^{3+}$ can occupy (Figure 4a) for each $\left[(\mathrm{Tb} / \mathrm{Eu})_{9}(\mathrm{acac})_{16}\left(\mu_{3}-\mathrm{OH}\right)_{8}\left(\mu_{4}-\mathrm{O}\right)\left(\mu_{4}-\mathrm{OH}\right) \cdot \mathrm{H}_{2} \mathrm{O}\right.$ unit, the central site is a perfect $\mathrm{C}_{4}$ group (deviation $\mathrm{R}=0.00$, coordination number $=8$ ) while the adjacent positions (Figure 4 b ) are close to a nonaxial $\mathrm{C}_{s} \operatorname{group}(\mathrm{R}=0.11$, coordination number $=7)$. However, when the $\left[(\mathrm{Tb} / \mathrm{Eu})_{9}(\mathrm{acac})_{16}\left(\mathrm{~m}_{3}-\mathrm{OH}\right)_{8}\left(\mathrm{~m}_{4^{-}}\right.\right.$ $\left.\mathrm{O})\left(\mathrm{m}_{4}-\mathrm{OH}\right)\right] \cdot \mathrm{H}_{2} \mathrm{O}(\mathbf{1}$ and $\mathbf{2}$ when the $\mathrm{Tb} / \mathrm{Eu}$ ratio is $19 / 1$ and $9 / 1$, respectively) is incorporated in the mesostructured silica nanoparticles (MSN), the complex may undergo a slight structural change (Figure 4), and this leads in the difference in the emission spectra of the pristine compounds ( $\mathbf{1}$ and 2) and their corresponding MSN-1 and MSN-2 nanostructured materials. Therefore, the inclusion of the complexes inside the MSN could approximate the adjacent sites to the central one, leading to a new coordination mode with the central oxygen atoms in situated in the $\mathrm{C}_{4}$ axis, changing their coordination number from 7 to 8 and, therefore, their point group symmetry from $\mathrm{C}_{\mathrm{s}}$ to $\mathrm{C}_{4 \mathrm{v}}$ (Figure 4). This explains the changing of the intensities of ${ }^{5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{2}$ and ${ }^{5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{4}$ emissions once the complexes in MSN-1 and MSN-2 present only $\mathrm{Ln}^{3+}$ sites with $\mathrm{C}_{4}$ axes, leading to relatively high intensity of the ${ }^{5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{4}$ and low intensity of ${ }^{5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{2}$ (taking the ${ }^{5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{1}$ as a reference), as discussed by Kariaka et al. ${ }^{1}$

The analysis above directly reflects the values of the so-called Judd-Ofelt intensity parameters $\Omega_{\lambda}(\lambda=2,4,6)$. The $\mathrm{Eu}^{3+}$ ion is known as a good spectroscopic probe to assess the chemical environment around it due to its magnetic dipole allowed ${ }^{5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{1}$ and the fact that the ${ }^{5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{\lambda}$ $(\lambda=2,4,6)$ depend only on their respective reduced matrix elements $\left\langle^{7} F_{\lambda}\left\|U^{(\lambda)}\right\|^{5} D_{0}\right\rangle \cdot 2,3$ Thus, from the emission spectra of the $\mathrm{Eu}^{3+}$, we can obtain the values of $\Omega_{\lambda}$ taking as a reference the ${ }^{5} \mathrm{D}_{0} \rightarrow$ ${ }^{7} \mathrm{~F}_{1}$ transition:

$$
\begin{equation*}
\Omega_{\lambda}=\frac{3 \hbar c^{3} A_{0 \rightarrow \lambda}}{\left.\left.4 e^{2} \omega^{3} \chi\right|^{7} F_{\lambda} \square\left\|U^{(\lambda)}\right\| \square^{5} D_{0}\right)^{2}} \tag{S1}
\end{equation*}
$$

where $\chi=\mathrm{n}\left(\mathrm{n}^{2}+2\right)^{2} / 9$ is the Lorentz local field correction and n is the linear index of refraction of the medium ( $\mathrm{n} \approx 1.5$ for most cases of Eu-based $\beta$-diketonate complexes ${ }^{2}$ ). $\omega$ is the angular frequency of the incident radiation field. The values of the squared reduced matrix elements $\left.{ }^{\mathrm{F}} \mathrm{F}_{\lambda} \square\left\|\mathrm{U}^{(\lambda)}\right\| \square^{5} \mathrm{D}_{0}\right\rangle^{2}$ is are equal to 0.0032 and 0.0023 for $\lambda=2$ and $4,{ }^{3}$ respectively. Since the ${ }^{5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{6}$ is very weak and rarely observed, this transition will not be addressed here.

The spontaneous emission coefficients $A_{0 \rightarrow \lambda}$ can be calculated by:

$$
\begin{equation*}
\left.A_{0 \rightarrow \lambda}=A_{0 \rightarrow 1}\left(\frac{S_{0 \rightarrow \lambda}}{S_{0 \rightarrow 1}}\right) \text { with } A_{0 \rightarrow 1}=\frac{e^{2} \omega^{3} \hbar}{3 m c^{5}} n^{3}\right\rangle^{7} F_{1} \square\left|L+2 S \| \square^{5} D_{0}\right\rangle^{2} \tag{S2}
\end{equation*}
$$

The quantity $A_{0 \rightarrow 1}$ can be used as an internal reference and corresponds to the spontaneous emission coefficient for the transition allowed by magnetic dipole ${ }^{5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{1}$. The square of the reduced matrix element $\left({ }^{7} F_{1}\|L+2 S\|^{5} D_{0}\right)^{2}=0.116$ can be estimated using free-ion wavefunctions in the intermediate coupling scheme, ${ }^{4}$ leading to $A_{0 \rightarrow 1} \cong 50$ s ${ }^{-1}$ for $n=1.5$. The values $S_{0 \rightarrow \lambda}$ are the areas under the emission curves ${ }^{5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{\lambda}$ ( $\lambda=2$ and 4). It is worth mentioning that Eqs. (S1) and (S2) are valid only for $\mathrm{Eu}^{3+}$-based compounds.

Given the presence and the number of peaks of certain $\mathrm{Eu}^{3+}$ transitions when the compound 1 is excited at $465 \mathrm{~nm}\left(\mathrm{Eu}^{3+}{ }^{7} \mathrm{~F}_{0} \rightarrow{ }^{5} \mathrm{D}_{2}\right.$ ), the emission spectra in Figures S13d and S14d confirm that the majority of $\mathrm{Eu}^{3+}$ is close to a $\mathrm{C}_{\mathrm{s}}$ point group symmetry. ${ }^{5}$ Note that the Judd-Ofelt intensity parameters for $\mathrm{Eu}^{3+}$ in compounds $\mathbf{1}$ and $\mathbf{2}$ should be almost equal once their difference consists only in the stoichiometry of $\mathrm{Tb}^{3+}$ and $\mathrm{Eu}^{3+}$ ions.

The obtained values of ${ }^{\Omega_{\lambda}}$ (Table S2) show an uncommon trend of ${ }^{\Omega_{4}}>\Omega_{2}$ for the cases of MSN-1 and MSN-2 materials. This indicates that the Eu ${ }^{3+}$ ion occupies a center close to a distorted cube (e.g. $\mathrm{C}_{4 \mathrm{v}}$ ) $)^{1,6-8}$ in accordance with the distorted structure when the complexes are incorporated into the MSN structure (Figure 4c), changing the coordination number of the adjacent $\mathrm{Ln}^{3+}$ sites from 7 (Figure 4b) to 8 (Figure 4c). Figure 4f shows the structures side-byside and it can be noted that these structures differ slightly.

From the experimental values of $\Omega_{2}$ and $\Omega_{4}$ we can estimate, by a fitting procedure in the JOYSpectra web platform, ${ }^{9}$ the physical-chemistry environment parameters such as ligating atom polarizabilities ( $\alpha^{\prime}$ ) and charge factor $(g) .{ }^{10,11}$ To obtain those parameters, a simple procedure is done for compound 1 in the JOYSpectra:
i) Substituing $8 \mathrm{Ln}^{3+}$ sites for $\mathrm{Y}^{3+}$ and keeping one site with the $\mathrm{Eu}^{3+}$;
ii) Inserting the values of $\Omega_{2}$ and ${ }^{\Omega_{4}}$ (Table S2);
iii) Marking the checkbox to do a fitting procedure;
iv) Filling the fields "Dynamic Coupling" and "Forced Electric Dipole" mechanisms with "FIT1" or "FIT2" for each type of ligand (e.g., FIT1 for oxygen atoms pertain to $\mathrm{HO}^{-}$ and FIT2 to oxygen from acac ligand) and start the calculation;
v) Using the same values obtained for $\alpha^{\prime}$ and $g$ and calculate, without the fitting procedure, the ${ }^{\Omega}$ with $\mathrm{Tb}^{3+}$ intead of $\mathrm{Eu}^{3+}$ ion.
The above procedure is a good approximation to obtain the $\mathrm{Tb}^{3+} \Omega_{\lambda}$ parameters theoretically because polarizabilities $\alpha^{\prime}$ and charge factors $g$ are more related to the ligand's electronic nature that remains the same. ${ }^{11}$

Table S2 shows the set of ${ }^{\Omega_{\lambda}}$ for $\mathbf{1}$ attributed to the $\mathrm{Tb}^{3+}$ ion. With this set of $\Omega_{\lambda}$, we can conclude that the peak attributed to $\mathrm{Tb}^{3+}{ }^{5} \mathrm{D}_{4} \rightarrow{ }^{7} \mathrm{~F}_{4}$ and $E u^{3+5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{1}$ transitions in Figure 3 b has a more predominance of the $\mathrm{Eu}^{3+}$ transition for two main reasons: i) the radiative component of $\mathrm{Eu}^{3+}{ }^{5} \mathrm{D}_{0} \rightarrow{ }^{7} \mathrm{~F}_{1}$ is around $50 \mathrm{~s}^{-1}$ while the $\mathrm{Tb}^{3+}{ }^{5} \mathrm{D}_{4} \rightarrow{ }^{7} \mathrm{~F}_{4}$ is approximately $24 \mathrm{~s}^{-1}$; ii) the population of $\mathrm{Eu}^{3+5} \mathrm{D}_{0}$ is higher than the $\mathrm{Tb}^{3+}{ }^{5} \mathrm{D}_{4}$ due to the $\mathrm{Tb}^{3+} \rightarrow \mathrm{Eu}^{3+}$ energy transfer. The last point will be detailed in the next section.

### 2.2. Pairwise Tb-to-Eu energy transfer

The energy transfer rates between $\mathrm{Tb}^{3+}$ and $\mathrm{Eu}^{3+}$ ions were calculated considering the dipoledipole ( ${ }^{W_{d-d}}$ ), dipole-quadrupole ( ${ }^{W_{d-q}}$ ), quadrupole-quadrupole ( ${ }^{( }{ }_{q-q}$ ), exchange $\left({ }^{W}{ }_{e x}\right)$, 12,13 and magnetic dipole-magnetic dipole $\left({ }^{W}{ }_{m d-m d}\right)$ mechanisms: ${ }^{14,15}$

$$
\begin{align*}
& W_{d-d}=\frac{\left(1-\sigma_{1}^{D}\right)^{2}\left(1-\sigma_{1}^{A}\right)^{2} 4 \pi e^{4}}{\left(2 J_{D}^{*}+1\right)\left(2 J_{A}+1\right)^{3 \hbar} R^{6}}\left(\sum _ { \lambda } \Omega _ { \lambda } ^ { D } \left\langle\psi_{D} J_{D} \square \| U^{(\lambda)}\right.\right. \\
& W_{d-q}  \tag{S3}\\
&=\frac{\left(1-\sigma_{1}^{D, A}\right)^{2}\left(1-\sigma_{2}^{A, D}\right)^{2} \pi e^{4}}{\left(2 J_{D}^{*}+1\right)\left(2 J_{A}+1\right) \hbar R^{8}}\left\langle f \square\left\|C^{(2)}\right\| \square f\right\rangle^{2} \times[ \\
& F  \tag{S4}\\
& W_{q-q} \quad=\frac{\left(1-\sigma_{2}^{D}\right)^{2}\left(1-\sigma_{2}^{A}\right)^{2} 28 \pi e^{4}}{\left(2 J_{D}^{*}+1\right)\left(2 J_{A}+1\right)^{5 \hbar} R^{10}} \times\left\langle r^{2}\right\rangle_{D}^{2}\left\langle r^{2}\right\rangle_{A}^{2}\langle f \square \\
& W_{e x}=\frac{2 \pi}{\hbar}\left[\left(\frac{e^{2}}{R}\right) \rho_{f-f}^{2}\right]^{2} F  \tag{S5}\\
& W_{m d-m d}=\frac{\left(1-\sigma_{1}^{D}\right)^{2}\left(1-\sigma_{1}^{A}\right)^{2} 4 \pi \mu_{B}^{4}}{\left(2 J_{D}^{*}+1\right)\left(2 J_{A}+1\right)^{3 \hbar R^{6}}}\left\langle\psi_{D} J_{D} \square\|L+2 S\| \square \psi_{D}^{*} J_{D}^{*}\right\rangle^{2} \times\left\langle\psi_{A}^{*} J_{A}^{*} \square\|L+2 S\| \square \psi .\right. \tag{S6}
\end{align*}
$$

where ${ }^{\Omega_{\lambda}}$ are the intensity parameters considering on the FED mechanism contribution (values in parentheses in Table S2) due to opposite parity configuration mixing (odd-ranking of the ligand field). ${ }^{11,12,16}$ The indexes A and D mean acceptor and donor, respectively.

In Eq. S6, $\rho_{f-f}$ is the overlap integral between the $4 f$ subshells of the donor and acceptor lanthanide ions. ${ }^{17}$ The $\rho_{f-f}$ decays very fast to zero with the increase of $R$ (donor-acceptor distance) ${ }^{17}$ and this is the reason why the rate ${ }^{W_{e x}}$ could be neglected in systems with high values of donor-acceptor distances. In the present case, the shortest distances between $\mathrm{Tb}^{3+}$ and $\mathrm{Eu}^{3+}$ are $R=3.62,3.65,3.73$ and $3.74 \AA$ (Figure S 17 ) for compounds $\mathbf{1}$ and $\mathbf{2}$, leading to very high values of $\rho_{f-f}\left(4.32 \times 10^{-3}, 3.98 \times 10^{-3}, 3.18 \times 10^{-3}\right.$, and $3.10 \times 10^{-3}$, respectively) and the exchange mechanism is effective in the energy transfer process. ${ }^{12}$ In the case of MSN-1 and MSN-2, the confinement of the complexes provided a shortening of these distances ( $R=3.52,3.55,3.44$ and $3.44 \AA$, respectively), leading to even higher values of $\rho_{f-f}\left(5.65 \times 10^{-3}, 5.22 \times 10^{-3}, 6.98 \times 10^{-3}\right.$, and $6.98 \times 10^{-3}$, respectively), which may improve the $\mathrm{Tb}-$ Eu energy transfer efficiency.

In Eq. S7, $\mu_{B}\left(=\frac{e \hbar}{2 m_{e} c}\right)$ is the Bohr magneton and the matrix elements $\left\langle\psi J\|L+2 S\| \psi^{*} J^{*}\right\rangle_{\text {were }}$ estimated using the intermediate coupling scheme with Ofelt's eigenfunctions., ${ }^{4,14,15}$ The shielding factors $\left(1-\sigma_{k}\right)$ for donor and acceptor (with $k=1$ and ${ }^{2}$ ) are given by: ${ }^{18}$

$$
\begin{equation*}
\left(1-\sigma_{k}^{D, A}\right)=\rho(2 \beta)^{k+1} \tag{S8}
\end{equation*}
$$

where $\rho$ is the overlap integral between the valence subshells of the ligating atom and the $4 f$ subshell of the lanthanide ion in the case of Eu-O chemical bonds while $\beta=1 /(1 \pm \rho)$ defines the centroid of the electronic density of $\mathrm{Eu}-\mathrm{O}$.

For the case of $\mathrm{Ln}^{3+}$-to- $\mathrm{Ln}^{3+}$ energy transfer, the spectral overlap factor $F$ is calculated using the following analytical expression: ${ }^{12}$
$F=\frac{\ln (2) G(\delta, T)}{\sqrt{\pi} \hbar^{2} \gamma_{D} \gamma_{A}}\left\{\left[\left(\frac{1}{\hbar \gamma_{D}}\right)^{2}+\left(\frac{1}{\hbar \gamma_{A}}\right)^{2}\right] \ln (2)\right\}^{-\frac{1}{2}} \times \exp \left[\frac{1}{4\left[\left(\frac{1}{\hbar \gamma_{A}}\right)^{2}+\left(\frac{1}{\hbar \gamma_{D}}\right)^{2}\right] \ln 2}-\left(\frac{\delta}{\left.\hbar \gamma_{D}\right)^{2}}\right)^{2} \ln 2{ }^{2}\right.$
with $G(\delta, T)\left\{\begin{array}{ll}1 & \text { if } \delta \geq 0 \\ e^{\left(\frac{\delta}{k_{B} T}\right)} & \text { if } \delta<0\end{array}\right]$
where ${ }^{\hbar \gamma_{\mathrm{D}}}$ and ${ }^{\hbar \gamma_{\mathrm{A}}}$ are to the bandwidths at half-height (in erg) of the donor and acceptor, respectively. $\delta$ is the energy difference between donor and acceptor transitions, $\delta=\mathrm{E}_{\mathrm{D}}-\mathrm{E}_{\mathrm{A}}$. The temperature dependence is given by the $\mathrm{G}(\delta, \mathrm{T})$, which a Boltzmann energy barrier $\exp \left(\delta / \mathrm{k}_{\mathrm{B}} \mathrm{T}\right)$ is activated when $\delta<0$, where $T$ is the temperature and $k_{B}$ is the Boltzmann's constant. The calculated forward ( $\mathrm{Tb}^{3+}$ to $\mathrm{Eu}^{3+}$ ) and backward ( $\mathrm{Eu}^{3+}$ to $\mathrm{Tb}^{3+}$ ) energy transfer rates are presented in Tables S3 and S4, respectively.

### 2.3. Distribution of $T b-E u$ pairs and the average energy transfer rate

Once we calculate the pairwise $\mathrm{Tb}^{3+}-\mathrm{Eu}^{3+}$ ET rates (Figure S 17 ), we can simulate a MonteCarlo type distribution of the $\mathrm{Tb}^{3+}$ and $\mathrm{Eu}^{3+}$ ions in the host matrix using a homemade program written in C language (which can be provided upon request). From the crystallographic data of 1, we expanded the unit cell $(1 \times 1 \times 1)$ to a larger one $(20 \times 20 \times 20$, Figure S18a) with a volume of $\approx$ $44105 \mathrm{~nm}^{3}$, containing $144000 \mathrm{~Tb}^{3+}$ host sites that can be randomly replaced by $\mathrm{Eu}^{3+}$ until reaching the desired dopant concentration (in \%). We can then obtain the occurrence of $\mathrm{Tb}-\mathrm{Eu}$ pairs as a function of distance $R$ and concentration $1-x$ of $\mathrm{Tb}^{3+}$ throughout the matrix, and consequently, the average forward $\langle W\rangle^{f}$ and backward $\langle W\rangle^{b}$ energy transfer rates ${ }^{14,19}$ (Eqs. S10 and S11).

$$
\begin{align*}
& \langle W\rangle^{f}=\sum_{i}\langle W\rangle_{i}^{f}=(1-x) \cdot x\left(\sum_{i} O_{i}(x) W_{i}^{f}\right)  \tag{S10}\\
& \langle W\rangle^{b}=\sum_{i}\langle W\rangle_{i}^{b}=(1-x) \cdot x\left(\sum_{i} O_{i}(1-x) W_{i}^{b}\right) \tag{S11}
\end{align*}
$$

where $W_{i}^{f}$ and ${ }^{W_{i}^{b}}$ represent the pairwise forward and backward energy transfer rates for the $\mathrm{i}^{\text {th }} \mathrm{Tb}-$ Eu distance (Figure S17) at a given temperature, respectively. The acceptor Eu ${ }^{3+}$ and donor/host $\mathrm{Tb}^{3+}$ stoichiometric fractions are represented by $x$ and $1-x$, respectively. The occurrence coefficients ${ }_{i}$ are related to the formation of a $\mathrm{Tb}-\mathrm{Eu}$ pair at distance $R_{i}$ with respect to the acceptor (for forward energy transfer $\langle W\rangle^{f}$ ) or donor (for backward energy transfer $\langle W\rangle^{b}$ ) obtained from Monte-Carlo simulations for each $\mathrm{Eu}^{3+}$ amount (Eq. S12): ${ }^{14,19}$

$$
\begin{equation*}
O_{i}(1-x)=\frac{N(i)}{s \cdot(1-x)} \quad, \quad O_{i}(x)=\frac{N(i)}{s \cdot x} \tag{S12}
\end{equation*}
$$

where $N(i)$ is the count of Tb -Eu pairs at distance $R(i)$, and $s$ is the number of host sites in the undoped matrix (which equals 144000 host sites in the $20 \times 20 \times 20$ expanded cell, Figure S18a). As the backward energy transfer is the energy coming from $\mathrm{Eu}^{3+}$ to $\mathrm{Tb}^{3+}$, the "acceptor" in this case is the $\mathrm{Tb}^{3+}$, justifying the use of coefficients $O_{i}(x)$ instead of $O_{i}(1-x)$ to calculate $\langle W\rangle^{b}$. We present all values of $O_{i}(x)$ obtained from simulations in Table S 5 while the $\langle W\rangle^{f}$ and $\langle W\rangle^{b}$ rates are in Figure S19.

## References

1 N. S. Kariaka, V. A. Trush, V. V. Dyakonenko, S. V. Shishkina, S. S. Smola, N. V. Rusakova, T. Y. Sliva, P. Gawryszewska, A. N. Carneiro Neto, O. L. Malta and V. M. Amirkhanov, ChemPhysChem, , DOI:10.1002/cphc. 202200129. Chemistry of Functional Groups, John Wiley \& Sons, Ltd, Chichester, UK, 2010.
3 W. T. Carnall, H. Crosswhite and H. M. Crosswhite, Energy level structure and transition probabilities in the spectra of the trivalent lanthanides in LaF3, Argonne, IL, United States, 1978.

5 P. A. Tanner, in Lanthanide Luminescence. Springer Series on Fluorescence (Methods and Applications), vol 7, eds. P. Hänninen and H. Härmä, Springer-Verlag, Berlin, Heidelberg, 2010, pp. 183-233.
6 M. Bettinelli, A. Speghini, F. Piccinelli, A. N. C. Neto and O. L. Malta, J. Lumin., 2011, 131, 1026-1028.
7 R. A. Sá Ferreira, S. S. Nobre, C. M. Granadeiro, H. I. S. Nogueira, L. D. Carlos and O. L. Malta, J. Lumin., 2006, 121, 561-567.
8 A. N. Carneiro, E. Huskowska, P. Gawryszewska, J. Legendziewicz and O. L. Malta, J. Lumin., 2016, 169, 454-457.
9 R. T. Moura Jr., A. N. Carneiro Neto, E. C. Aguiar, C. V. Santos-Jr., E. M. de Lima, W. M. Faustino, E. E. S. Teotonio, H. F. Brito, M. C. F. C. Felinto, R. A. S. Ferreira, L. D. Carlos, R. L. Longo and O. L. Malta, Opt. Mater. X, 2021, 11, 100080.

10 R. T. Moura Jr., A. N. Carneiro Neto, R. L. Longo and O. L. Malta, J. Lumin., 2016, 170, 420-430.
11 A. N. Carneiro Neto, E. E. S. Teotonio, G. F. de Sá, H. F. Brito, J. Legendziewicz, L. D. Carlos, M. C. F. C. Felinto, P. Gawryszewska, R. T. Moura Jr., R. L. Longo, W. M. Faustino and O. L. Malta, in Handbook on the Physics and Chemistry of Rare Earths, volume 56, eds. J.-C. G. Bünzli and V. K. Pecharsky, Elsevier, 2019, pp. 55-162.
12 O. L. Malta, J. Non. Cryst. Solids, 2008, 354, 4770-4776.
13 A. N. Carneiro Neto, R. T. Moura and O. L. Malta, J. Lumin., 2019, 210, 342-347.
14 V. Trannoy, A. N. Carneiro Neto, C. D. S. Brites, L. D. Carlos and H. Serier-Brault, Adv. Opt. Mater., 2021, 9, 2001938.
A. N. Carneiro Neto, R. T. Moura, A. Shyichuk, V. Paterlini, F. Piccinelli, M. Bettinelli and O. L. Malta, J. Phys. Chem. C, 2020, 124, 10105-10116.
16 T. Kushida, J. Phys. Soc. Japan, 1973, 34, 1318-1326.
17 A. N. Carneiro Neto and R. T. Moura Jr., Chem. Phys. Lett., 2020, 757, 137884.
18 O. L. Malta, H. F. Brito, J. F. S. Menezes, F. R. G. e Silva, S. Alves, F. S. Farias and A. V. M. de Andrade, J. Lumin., 1997, 75, 255-268.

19 X. Qin, A. N. Carneiro Neto, R. L. Longo, Y. Wu, O. L. Malta and X. Liu, J. Phys. Chem. Lett., 2021, 12, 1520-1541.

