Supporting information

Study on the optical stability of CsPbBr₃ with different dimensions (0D, 1D, 2D, 3D) under

thermal environment

Jindou Shi¹, Minqiang Wang*¹, Zheyuan Da¹, Chen Zhang¹, Junnan Wang¹, Yusong Ding¹,

Youlong Xu*1 and Nikolai V. Gaponenko2

¹Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education International Center for Dielectric Research&Shannxi Engineering Research Center of Advanced Energy Materials and Devices, Xi'an Jiaotong University, 710049 Xi'an, China.

²Belarusian State University of Informatics and Radioelectronics, P. Browki 6, 220013 Minsk, Belarus.

Corresponding Author: E-mail: mqwang@xjtu.edu.cn

Experimental Section

Materials

The cesium carbonate (Cs_2CO_3 , 99.99%), lead (II) bromide (PbBr₂, 99.99%), oleic acid (OA, 85%), oleylamine (OAm, 80-90%), 1-octadecene (ODE, 90%), hexane (C_6H_{12} , 99.5%) were purchased from Aladdin. All the reagents were used without further purification.

Preparation of CsPbBr₃ with different dimensions (0D, 1D, 2D and 3D).

In this report, the traditional high temperature thermal injection method was employed to prepare CsPbBr₃ fluorescent materials. Subsequently, the conversion between the different dimensions (0D, 1D, 2D, 3D) of CsPbBr₃ was achieved by adjusting the ratio of the precursor solution, and controlling the time as well as the temperature of the high temperature reaction. Both Cs and Pb precursors were dried under vacuum at 120 °C for 30 mins, after which the precursors were heated to 140 °C in a nitrogen atmosphere to ensure complete dissolution. Finally, thermal injection operation was carried out under different reaction conditions. The crude product after the reaction was washed several times with C_6H_{12} , and dispersed in C_6H_{12} for storage. The specific preparation parameters listed in the table below.

Dimonsions	Cs precursor	Pb precursor	Reaction	Injection amount	Reaction
Dimensions			temperature	of Cs precursor	time
0D	160 mg	69 mg PbBr ₂			5 s
	Cs_2CO_3	5 mL ODE	150 °C	0.4 mL	
	6 mL ODE	0.5 mL OA	150 C		
	0.5 mL OA	0.5 mL OAm			
	200 mg	66 mg PbBr ₂			
1D	Cs_2CO_3	5 mL ODE	150 °C	0.6	50 mins
	7.5 mL ODE	0.4 mL OA	150 C	0.0 IIIL	
	0.6 mL OA	0.3 mL OAm			
2D	$32 \text{ mg } \text{Cs}_2\text{CO}_3$	13 mg PbBr ₂	150 °C	1 mL	5 mins
	10 mL OA	10 mL ODE			
		0.25 mLOA			
		0.25 mL OAm			

3D	160 mg	69 mg PbBr ₂			
	Cs_2CO_3	5 mL ODE	100 °C	0.5 mL	30 mins
	6 mL ODE	0.5 mL OA			
	0.5 mL OA	0.5 mL OAm			

Characterization Methods

The morphology and microstructure of the as-synthesized CsPbBr₃ with different dimensions (0D, 1D, 2D and 3D) were analyzed using a high-resolution TEM (JEOL JEM-F200). EDS spectra of powder samples were investigated by field emission scanning electron microscopy (SEM, FEI Quatan FEG 250) equipped with an energy dispersive spectrometer (EDS). The photoluminescence (PL) spectra, PL quantum yields (PLQYs) was recorded on an Edinburgh Instruments FLS 1000 spectrometer. The time-resolved PL (TRPL) decay curves were recorded on an Edinburgh Instruments FLS 1000 spectrometer by using a quartz glass tool to fix different powder samples respectively. The ultraviolet-visible (UV-Vis) absorption spectra were recorded by PE Lambda 950. The X-ray diffraction (XRD) patterns were obtained using the DB-ADVANCE X-ray diffraction analyzer diffractometer. The PL spectra of the samples at different temperatures were collected by Photo Research 670 spectrometer after heating the samples using a heater (MS7-H550-S, DLAB, China) and under 365 nm UV light irradiation.

Fig. S1 TEM images of 0D CsPbBr₃ QDs (a), SEM images of 1D CsPbBr₃ NWs (b), 2D CsPbBr₃ NPs (c) and 3D CsPbBr₃ MCs (d), with corresponding EDS mapping and spectra (e-h) of Cs (blue), Pb (green) and Br (red), respectively.

Fig. S2 Thickness count of 2D CsPbBr₃ NPs.

Fig. S3 Normalized PL spectra (a-d), absorption spectra (e-h) and corresponding (αhv)² vs photon energy (eV) curves (i-l) of 0D CsPbBr₃ QDs, 1D CsPbBr₃ NWs, 2D CsPbBr₃ NPs and 3D CsPbBr₃ MCs after annealing at 333 K and 373 K for 20 mins.

1D, 2D and 3D)					
Dimension	$\tau_1(ns)$	A ₁ (%)	$\tau_2(ns)$	$A_{2}(\%)$	$\tau_{ave}(ns)$
0D	5.21	38.5	27.71	61.5	25.34
1D	5.78	41.3	25.73	58.7	23.01
2D	4.12	46.1	22.71	53.9	20.21
3D	3.2	57.2	15.92	42.8	13.23

Table. S1. Double exponential fitting results of PL decays for CsPbBr3 with different dimensions (0D,

Table. S2. Double exponential fitting results of PL decays for CsPbBr₃ with different dimensions (0D,

Dimension	$\tau_1(ns)$	A ₁ (%)	$\tau_2(ns)$	$A_{2}(\%)$	$\tau_{ave}(ns)$
0D	2.32	70.9	9.00	29.1	6.42
1D	2.38	66.9	9.71	33.1	7.28
2D	2.95	62.7	13.76	37.3	10.9
3D	2.13	60.7	15.16	39.3	12.84

1D, 2D and 3D) after annealing at 373K for 20 mins

The PL decay curves of different samples were studied and the decay traces for the samples were well fitted with double exponential function Y(t) based on nonlinear least-squares, using the following expression.

 $Y(t) = A_1 exp(-t/\tau_1) + A_2 exp(-t/\tau_2)$

where A_1 , A_2 are fractional contributions of time-resolved emission decay lifetimes τ_1 , τ_2 .

The average lifetime (τ_{ave}) of the different samples can be obtained by the following equation.

$$\tau_{ave} = \frac{A_1 \tau_1^2 + A_2 \tau_2^2}{A_1 \tau_1 + A_2 \tau_2}$$