1 Supporting Information

2

3 Universal probe-based SNP genotyping with visual readout: a robust

4 and versatile method

5	Zhongzhong Wang, Zhang Zhang, Wang Luo, Luojia Wang, Xiaole Han, Rong Zhao,
6	Xin Liu, Jianhong Zhang, Wen Yu, Junjie Li, Yujun Yang [*] , Chen Zuo [*] and Guoming
7	Xie*
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34 25	
55 26	
30 27	
3/ 20	
20	
39 40	
40	

42 S1 Tables

45 Table S1. Rs671 related primer sequences.

Name	Oligonucleotide Sequence (5'-3')	Size (bp)
Sequencing-F	ACTTTGGGGGCAATACAGGGG	20
Sequencing-R	CAGCAGGTCCTGAACTTCCA	20
FP-G	CCCACACTCACAGTTTTCACTTC	23
FP-A	CCCACACTCACAGTTTTCACTTT	23
RP	ACTTTGGGGCAATACAGGGG	20
LP-G	GGAGGATCACTCCAACTAGACTACCCACACTCACAGTTTTCACTTC	46
LP-A	ATCATCAGGTCTGGAAGATTACGCCCACACTCACAGTTTTCACTTT	46
LP-R	CTTCTTTCAGAGGTCAGGTGTATACTTTGGGGGCAATACAGGGG	43
Wild-Probe	GGAGGATCACTCCAACTAGACTA-FAM	23
Mutant-Probe	ATCATCAGGTCTGGAAGATTACG-Digoxin	23
Shared-Probe	CTTCTTTCAGAGGTCAGGTGTAT-Biotin	23

- 46 FP: forward primer; RP: reverse primer; LP: long primer.

49 Table S2. MTHFR A1298C related primer sequences.

Name	Oligonucleotide Sequence (5'-3')	Size(bp)
Sequencing-F	TCTCCCTTTGCCATGTCCAC	20
Sequencing-R	CAGGGGCAATTCCTCTTCCC	20
FP-A	GGGGAGGAGCTGACCAGTGAAGT	23
FP-C	GGGGAGGAGCTGACCAGTGAAGG	23
RP	TCTCCCTTTGCCATGTCCACAGC	23
LP-A	GGAGGATCACTCCAACTAGACTAGGGGAGGAGCTGACCAGTGAAGT	46
LP-C	ATCATCAGGTCTGGAAGATTACGGGGGGGGGGGGGGGCTGACCAGTGAAGG	46
LP-R	CTTCTTTCAGAGGTCAGGTGTATTCTCCCCTTTGCCATGTCCACAGC	46

52 Table S3. MTHFR C677T related primer sequences.

Name	Oligonucleotide Sequence (5'-3')	Size(bp)
Sequencing-F	CCCTCACCTGGATGGGAAAG	20
Sequencing-R	AAGATCAGAGCCCCCAAAGC	20
FP-C	AAGCTGCGTGATGAAAATCGC	23
FP-T	AAGCTGCGTGATGAAAATCGT	23
RP	TGCAAGATCAGAGCCCCCAAAGC	23
LP-C	GGAGGATCACTCCAACTAGACTAAAGCTGCGTGATGATGAAATCGC	46
LP-T	ATCATCAGGTCTGGAAGATTACGAAGCTGCGTGATGATGAAATCGT	46
LP-R	CTTCTTTCAGAGGTCAGGTGTATTGCAAGATCAGAGCCCCCAAAGC	46

54

55 Table S4. MTRR A66G related primer sequences.

Name	Oligonucleotide Sequence (5'-3')			
Sequencing-F	GTGTGGGTATTGTTGCATTGTTTC	24		
Sequencing-R	GTGGTGGTATTAGTGTCCTTTTGTT	25		
FP-A	CATGTACCACAGCTTGCTCACAT	23		
FP-G	CATGTACCACAGCTTGCTCACAC	23		
RP	GTGTGGGTATTGTTGCATTGTTT	23		
LP-A	GGAGGATCACTCCAACTAGACTACATGTACCACAGCTTGCTCACAT	46		
LP-G	ATCATCAGGTCTGGAAGATTACGCATGTACCACAGCTTGCTCACAC	46		
LP-R	CTTCTTTCAGAGGTCAGGTGTATGTGTGGGGTATTGTTGCATTGTTT	46		

5758 Table S5. Comparison of typing formula and sequencing results of rs671 in 50 cases.

Sample Genotype based on type		Genotype based on
Number	formula	Sequencing
1	GG	GG
2	GG	GG
3	GG	GG
4	GG	GG
5	GG	GG
6	GG	GG
7	GG	GG
8	GG	GG
9	GG	GG
10	GG	GG
11	GG	GG
12	GG	GG
13	GG	GG
14	GG	GG
15	GG	GG
16	GG	GG
17	GA	GA
18	GG	GG
19	GA	GA
20	GG	GG
21	GA	GA
22	GA	GA
23	GG	GG
24	GA	GA
25	GA	GA
26	GG	GG
27	GG	GG

28	GG	GG
29	GA	GA
30	GA	GA
31	GG	GG
32	GA	GA
33	GG	GG
34	GG	GG
35	GG	GG
36	GG	GG
37	GG	GG
38	AA	AA
39	GG	GG
40	GG	GG
41	GG	GG
42	GA	GA
43	GG	GG
44	GG	GG
45	GA	GA
46	GA	GA
47	GG	GG
48	GG	GG
49	GA	GA
50	GA	GA

61	Table S6. Comp	parison of MTHFR	C677T, MTHFR	A1298C and I	MTRR A660	typing:	results
----	----------------	------------------	--------------	--------------	-----------	---------	---------

Sample	Genotype based on typing formula		Genotyp	e based on Sec	quencing	
Number	A1298C	C677T	A66G	A1298C	C677T	A66G
1	AC	СТ	AA	AC	CT	AA
2	AA	CT	AA	AA	CT	AA
3	AA	CT	AA	AA	CT	AA
4	CC	TT	AA	CC	TT	AA
5	AC	CC	AG	AC	CC	AG
6	AC	CC	AG	AC	CC	AG
7	AC	CC	AG	AC	CC	AG
8	AC	CC	GG	AC	CC	GG

Fig S1. Effect of temperature on reaction specificity and efficiency: a: The comparison of specific (orange) and non-specific (dark blue) Ct values yielded the optimum temperature of approximately 64-68°C. b-f: Primer A amplified GG and AA at 64-68°C. 66°C was selected as the optimum temperature.

Fig S2. Effect of primer length on the reaction: a-f: reaction efficiency and specificity for primers of length 20-25nt. Among them, the efficiency and specificity of length 23nt is the most suitable.

Fig S3. The resulting standard curve generated by plotting the target concentration versus threshold cycle(a); Amplification curves(b).

Fig S4. PAGE to verify probe dimerization (two parallel experiments). From left to right: biotin probe, digoxin probe, FAM probe, amplification of the three probes.

ç	91	
ç	92	
ç	93	
9	94	
9	95	
ç	96	
ç	97	
9	98	
ç	99	
1()0	
1()1	
1()2	
1()3	
1()4	
1()5	
1()6	
1()7	
1()8	
1()9	
11	10	
11	11	
11	12	
11	13	
11	14	
11	15	

Fig S5. Sequencing results of rs671 blood gDNA in 50 cases. (The degenerate base R represents A/G)

Fig S6. LFTS results of rs671 blood gDNA in 50 cases. (The first 15 results were left for too long, more than four months, and the strips had varying degrees of discoloration.)

MTRR A66G

Fig S7. Sequencing results of MTHFR A1298C, MTHFR C677T, MTRR A66G blood gDNA in 8 cases each. (The degenerate base R represents A/G; Y represents C/T; M represents A/C)

126

A1298C

C677T

A66G

Fig S8. LFTS results of MTHFR A1298C, MTHFR C677T, MTRR A66G blood gDNA.