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Chemicals

Zirconium(IV) chloride (Sigma-Aldrich, ACS reagent, 99.5%), 2-aminoterephthalic acid 

(Energy Chemical, ACS reagent, 98%), N,N-dimethylformamide (RCI Labscan, AR., 99.9%), 

dichloromethane (Scharlau, ACS reagent, 99.9%) formic acid (Scharlau, ACS reagent, 98%–

100%), nitric acid (Fisher, ACS reagent, 68–70%), 3,3'-disulfanediyldipropanoic acid (Macklin, 

ACS reagent, 99%), N,N′-Diisopropylcarbodiimide (Energy Chemical, ACS reagent, 98%), 

Dithiothreitol (Aladdin, ACS reagent, 97%), caesium fluoride (3A, ACS reagent, 99.5%), 

mercury(II) sulfate (Riedel-de Haën, ACS reagent, 98%), cadmium nitrate tetrahydrate (Sigma-

Aldrich, ACS reagent, 98%), cobalt(II) nitrate hexahydrate (Acros Organics, ACS reagent, 98%), 
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copper(II) nitrate hemi(pentahydrate) (Sigma-Aldrich, ACS reagent, 98%), zinc nitrate 

hexahydrate (Sigma-Aldrich, reagent grade, 98%), nickel(II) nitrate hexahydrate (Sigma-Aldrich, 

ACS reagent, 98.5%) lead(II) nitrate (Sigma-Aldrich, ACS reagent, 99.0%), chromium(III) nitrate 

nonahydrate (Sigma-Aldrich, ACS reagent, 100%), iron(III) nitrate nonahydrate (Sigma-Aldrich, 

ACS reagent, 98%) were used without further purification. 1,000 ppm arsenic stock solution was 

purchased from High-Purity Standards. Deionized water (18.2 M Ω cm) was used. The 

concentration of HNO3 in all the heavy metal ion stock solutions is 5%.

General testing and characterization methods 

The morphologies of the as-synthesized materials were performed on an SEM (JSM-7800). 

The samples were gold coated before SEM measurement. The crystal structure was examined on 

an analytical X-ray diffractometer (Cu Kα radiation λ = 1.54056 Å). Nitrogen 

adsorption/desorption isotherms were recorded with a Micromeritics 3Flex apparatus at 77 K to 

determine the Brunauer-Emmet-Teller (BET) surface area. Prior to measuring nitrogen isotherms, 

the samples were activated by heating to 120°C for 3 hours under vacuum at a pressure of 100 

mtorr. The Fourier transform infrared (FTIR) spectra were recorded by a Thermo Fisher Nicolet 

IS50. The X-ray photoelectron spectroscopy (XPS) was measured by a Kratos Axis Ultra DLD 

multi-technique surface analysis system. TGA was measured from 25°C to 700°C with a heating 

rate of 5°C min–1. The chemical bonds of the MOFs were measured using Bruker 400 MHz 1H 

NMR. Contact angle meter Biolin was used for contact angle measurement.
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Synthetic Procedures 

1. Synthesis of UiO-66-NH2 MOFs

UiO-66-NH2 MOFs were prepared by solvothermal strategy.1 Zirconium(IV) chloride 

(1.280 g, 5.4926 mmol) and 2-aminoterephthalic acid (0.995 g, 5.4926 mmol) were added in 200 

mL of DMF in a 350-mL screw-capped glass jar, sonicated until fully dissolved. Formic acid (50 

mL) was added to the solution, then the glass jar was heated in an oven at 100°C for 24 h for a 

solvothermal reaction. After cooling, the precipitate was washed by centrifugation with DMF and 

acetone, each for 3 days, and three times per day. The MOFs were dried overnight in the oven at 

100°C before characterization. 

2. Post-functionalization of UiO-66-NH2

UiO-66-A.T. were synthesized with some modifications.2 3,3'-Disulfanediyldipropanoic 

acid (210.3 mg, 1.00 mmol), and diisopropylcarbodiimide (162 μL, 1.03 mmol), UiO-66-NH2 

(10.99 mg, contains approximately 0.2 mmol NH2 functional groups) were added after added to 40 

mL of chloroform, heated in reflux for 7 hours. The sample was filtered and washed with acetone. 

10.5 mg of the product and 1 g of dithiothreitol were added into 27 mL of ethanol and stirred at 

room temperature for 1 day. The sample was filtered and washed with ethanol. The powder was 

dried overnight in the oven at 100°C before characterization. NMR analysis was performed on 

digested samples. UiO-66-A.T. was acid digested in a mixture of 0.4 mL DMSO-d6 and 0.2 mL of 

CsF in D2O. 

A thiol-disulfide exchange reaction took place to form a stable six-membered ring with an 

internal disulfide bond. The crosslinking reaction was carried out at five different reaction 
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conditions (Table S3),2 chloroform in reflux for 7 hours demonstrated the optimized sulfur mass 

percentage of 9.56%.

NMR Spectra

Figure S1a. Stacked 1H NMR spectra of the digested UiO-66-A.T. 
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Figure S1b. 1H NMR spectra of the digested UiO-66-NH2
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Figure S1c. 1H NMR spectra of the digested UiO-66 crosslinked intermediate before S-S 

cleavage.
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Figure S1d. 1H NMR spectra of the digested UiO-66-A.T.

Figure S1. Digested NMR of the MOFs. 
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Other data 

The adsorption capacity of heavy metal ions was calculated according to Equation S1:

𝑞𝑒 = (𝐶0 ‒ 𝐶𝑒)𝑉
𝑚

  (𝐸𝑞. 𝑆1)

where qe (in mg g–1) is the amount of heavy metal ion adsorbed at equilibrium, C0 and Ce (in mg 

L–1) are the initial and equilibrium metal ion concentration, respectively. V (in L) is the volume 

of the metal solution, and m (in g) is the mass of the adsorbent used.

Freundlich isotherm model (Equation S2) and Langmuir isotherm model (Equation S3) 

are used to analyze the adsorption kinetics of Hg2+ (Fig. S9c, 3f inset).

ln 𝑞𝑒 = 𝑙𝑛𝐾𝑓 +
1
𝑛

𝑙𝑛 𝐶𝑒 (𝐸𝑞. 𝑆2)

𝐶𝑒

𝑞𝑒
=

𝐶𝑒

𝑞𝑚𝑎𝑥 
+

1
𝑞𝑚𝑎𝑥𝑏

 (𝐸𝑞. 𝑆3)

where qmax is the maximum adsorption capacity, Kf and b are bare Freundlich constant and 

Langmuir constant, respectively, and n is the dimensionless exponent of Freundlich equation.
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Table S1. Mass percentage before and after deprotection obtained by XPS.

mass %

Elements

Before 

deprotection

After 

deprotection

C 35.65 38.03

N 3.22 3.64

S 11.22 6.24

O 27.25 27.16

Zr 22.67 24.93

Table S2. Hg2+ adsorption performance of different adsorbents and post-functionalized 

UiO-66-NH2

Adsorbent

Adsorption 

Capacity (mg g–1) Rate Constant (g mg–1 min–1) References

Activated Carbon 2 0.0129 3

Zeolite 8 0.0008 4

Biomass 20 0.0280 5

PTMS-functionalized Silica 

Gel 132 0.0001 6

Thiol functionalized silica 

nano hollow sphere 210 0.0002 7

UiO-66 59 – 8

UiO-66-NH2 103 – 9
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UiO-66-NH2 113 – 10

UiO-66-NH2 145 – 8

UiO-66-NH2 208 0.0051 This work

UiO-66-SH 110 0.0114 11

Zr-DMBD 172 0.0050 12

Zr-L1 193 –

Zr-L3 245 – 13

NSU66 265 – 14

Zr-L2 275 –

Zr-L4 322 – 13

UiO-66-AHMT

328 (600 ppm stock 

solution) 0.0005 9

PCN-224-ALA(O) 344 – 15

Cys-UiO-66 350 0.0001 10

UiO-66-EDTA 372 0.0025 16

ZrOMTP 403 – 17

PCN-222-MAA(O) 509 – 15

UiO-66-QU

556 (600 ppm stock 

solution) 0.0050 18

UiO-66-IT

580 (1500 ppm stock 

solution) 0.0032 19

Zr-MOF-NAC 

594 (800 ppm stock 

solution) 0.0070 20
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UiO-66-DMTD 

671 (700 ppm stock 

solution) 0.0012 8

UiO-66-A.T. 691 0.2823 This work

Table S3. Sulfur mass percentage according to different reaction conditions

10

Conditions Attempt Sulfur mass % Average sulfur mass %

1 3.88

DMF, rt, 2 days 2 3.83
3.86

1 3.01

DMF, 50°C, 7 hours 2 3.63
3.32

1 6.24

DCM, rt, 2 days 2 4.47
5.36

1 5.03

DCM, reflux, 7h 2 4.66
4.85

1 7.89

Chloroform, reflux, 7h 2 11.22
9.56



Figure S2. Scanning electron microscopy image of UiO-66-A.T.
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Figure S3. Characterization of UiO-66-MOFs. a, Barrett-Joyner-Halenda (BJH) pore size 

distributions of UiO-66-A.T. and UiO-66-NH2. b, BJH pore size distributions of UiO-66-A.T. and 

UiO-66-NH2 after 6 cycles. c, FTIR spectra of UiO-66-A.T., UiO-66-NH2, Hg2+ adsorbed UiO-66-

A.T., Hg2+ adsorbed UiO-66-NH2. d, XPS spectra of UiO-66-A.T., UiO-66-NH2, Hg2+ adsorbed 

UiO-66-A.T., Hg2+ adsorbed UiO-66-NH2. e, TGA of UiO-66-A.T. and UiO-66-NH2.
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Figure S4. Adsorption performance of UiO-66-MOFs. a, Nitrogen adsorption isotherms of UiO-

66-A.T. and UiO-66-NH2 after Hg2+ adsorption. b, Removal efficiency at different pH conditions. 

c, Pseudo-first-order fitting. d, Linear regression by fitting the equilibrium adsorption data with 

Freundlich model.
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Figure S5. XPS spectra of UiO-66-A.T. a, C 1s spectra. b, N 1s spectra. c, O 1s spectra. d, S 2p 

spectra. e, Zr 3d spectra. 
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Figure S6. XPS spectra of Hg2+@UiO-66-A.T. a, C 1s spectra. b, N 1s spectra. c, O 1s spectra. 

d, S 2p spectra. e, Zr 3d spectra. f, Hg 4f spectra. 
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Figure S7. XPS spectra of UiO-66-NH2. a, C 1s spectra. b, N 1s spectra. c, O 1s spectra. d, Zr 

3d spectra. 
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Figure S8. XPS spectra of Hg2+@UiO-66-NH2. a, C 1s spectra. b, N 1s spectra. c, O 1s spectra. 

d, Zr 3d spectra. e, Hg 4f spectra. 
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Figure S9. XPS spectra of UiO-66 crosslinked intermediate. a, C 1s spectra. b, N 1s spectra. c, 

O 1s spectra. d, S 2p spectra. e, Zr 3d spectra. 
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