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Note S1:The definition of the angle φ between the vector of the Néel-type target skyrmion and 2D plane 

supporting the target skyrmion
The Néel-type target skyrmion in 3D space are shown in Fig. S1. It can be found that the angle φ between the 

vector of the Néel-type target skyrmion and 2D plane supporting the target skyrmion can be divided into four 
situations φ1, φ2, φ3, and φ4 (Fig. S1). For a simpler description, we specify that when the vector points toward the 
positive z direction, the angle φ is positive, while it is negative when the vector points toward the negative z direction. 
Therefore, in Fig. S1, the angles φ1 and φ4 are positive, while the angles φ2 and φ3 are negative. The angle at a 
specific point can be expressed as:

(S1)

 
 

1

1

tan / , 0
tan / , 0

z r r

z r r

e e e
e e e






   
where ez and er are the z-component and in-plane component of the vector of the Néel-type target skyrmion, 
respetively.

Fig. S1 Néel-type target skyrmion. (a) Distribution of the vector fields in a Néel-type target skyrmion with rotational symmetry. 
(b) Distribution of the vector fields along a specific radial direction, showing a cycling from the up state (φ = 90°) at the center of 
the target skyrmion to down state (φ = −90°) and then back to up state along the radial direction. The angle between the vector and 
the 2D plane where the target skyrmion is located can be divided into four situations as shown in (b).  
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Note S2:The skyrmion number of the target skyrmion with rotational symmetry
The topological invariant S of a target skyrmion is defined in Cartesian coordinate system as:
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where D is the integration area,  is the normalized three-dimensional vector. When the angular component of the er

 in the cylindrical coordinate system (r, θ, z) is 0, the vector  can be expressed as:er er
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Where φ is a function of the coordinates r, indicating the angle between the vector and the plane where D er

is located. Because the relationships between the unit direction vector and in the cylindrical coordinate system r̂i î

and the unit vector and in the Cartesian coordinate system arex̂i ŷi
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Therefore, the derivative of the unit direction vector and  with respect to the independent variables x and r̂i î
y are 
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Then the derivative of the normalized unit vector  defined in Eq. (S3) with respect to the independent er
variable x and y are 
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Then the form of the integrand in Eq. (S2) can be expressed as
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Therefore, for the vector distribution as shown in Eq. (S3), the topological invariance of target skyrmion can 
be transformed as 
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According to Eq. (S8), S is always equal to 1 (0) as long as the angle  changes from π/2 to −π/2 (π/2).φ



Note S3: The relationship between the different components of electric fields of TM electromagnetic waves in 

a cylindrical coordinate system
When both the current density and charge density are zero, Maxwell's equations can be expressed as:
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and:
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By expanding Eq. (S9) and (S10), one can lead to the following relations between different components of the 
electric field and magnetic field strengths:
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For a TM (Hz = 0) electromagnetic waves, the dependence of the electric field on the coordinate z and t is 

. By plugging Eq. (S12a) into (S11b), one can obtain:)iexp( tizkz ω
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By plugging the Eq. (S12b) to (S11a), one can obtain:
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where ks is the in-plane wave vector, and satisfies .  is the wave vector in vacuum. 2
0
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When  is an imaginary number, the electric field is an evanescent wave in the z-direction and the zz ikk 
dependence of the electric field on the coordinate z is exp(−kzz). Eq. (S13) and (S14) then become:
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Note S4: Fourier transform of rotationally symmetric functions
The Fourier transform (FT) of a binary functions f(x,y) is defined as:
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where (x, y) and (kx, ky) are the independent variables in real space and momentum space, respectively. The relations 
between the different variables in Cartesian coordinate system and polar coordinate system are:
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where r and ρ are the independent polar variables in real space and momentum space, respectively. Therefore, the 
FT (S16) can be expressed as:
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When the function f is independent on θ, Eq. (S18) can be expressed as:
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Due to the existence of definite integral:
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Eq. (S19) can be simplified as:
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Because the right-hand side of the Eq. (S21) is not a function of β, the left-hand side of the equation should 
not be a function of angle β either. Therefore, Eq. (S21) can be expressed as:
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Similarly, the expressions of the inverse FT is:
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According to the above analysis, when a function f is rotationally symmetric, its FT F must be rotationally 

symmetric, and vice versa. Eq. (S22) and (S23) are 2D FT of rotationally symmetric functions, also known as the 
zero-order Hankel transform.

For the rotationally symmetric function Cδ(ρ-ks) illustrated in the lower left corner of Fig. 2(a), its inverse FT 
can be found by Eq. (S23). Then field intensity is:
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Since the function decays exponentially in the z-direction, the entire distribution of the electric field intensity 

can be expressed as
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Fig. S2 Néel-type optical target skyrmions formed by surface plasmon polaritons in a gold flake. (a, b, d, e) 

Distributions of the normalized electric field component ez (a, d) and er (b, e) above the gold flake. (c, f) Radial 

variations of the ez, er, and   along a specific in-plane direction. Upper panels in (c) and (f): radial evolvements of 

the electric field vector. A z-polarized electric dipole is employed as the excitation, which is placed 100 nm above 

the gold flake. The electric field signals were obtained on the plane 50 nm above the sample surface. The excitation 

wavelengths are 532 nm (a−c) and 633 nm (d−e), respectively. The thickness of the gold flake is 200 nm. Scale bars 

are 200 nm.



Fig. S3 Néel-type optical target skyrmions formed by phonon polaritons in an hBN flake. (a, b, d, e) Distributions of the normalized 

electric field component ez (a, d) and er (b, e) above the gold flake. (c, f) Radial variations of the ez, er, and  along a specific in-sn
plane direction. Upper panels in (c) and (f): radial evolvements of the electric field vector. A z-polarized electric dipole is employed 
as the excitation, which is placed 100 nm above the hBN flake. The electric field signals were obtained on the plane 50 nm above 
the sample surface. The excitation wavelengths are 12.66 μm (a−c) and 12.50 μm (d−e), respectively. The thickness of the hBN 
flake is 200 nm. Scale bars are 200 nm.

Table S1 The coordinates of the zeros of er and , and the extreme points of ez in Figs. 1−6 in the main text.sn
Radial coordinate er sn ez

3.832 3.832 3.832
7.016 7.016 7.016
10.173 10.173 10.173Fig.1: ksr

13.324 13.324 13.324
52 52 52Fig. 2: r (nm) 98 98 98

Fig. 3: r (nm) 46
88

46
88

46
88

Fig. 4(a-c):r (nm) 349
687

349
687

349
687

347 347 347Fig. 4(d-f): r (nm) 683 683 683
426 426 426Fig. 5(a-c): r (nm) 800 800 800
312 312 312Fig. 5(d-f): r (nm) 571 571 571
72 72 72Fig. 6: r (nm) 146 146 146

Table S2. The values of the topological invariants.
topological invariant S

Fig. 2
Fig. 3
Fig. 4(a-c)

0.995
0.993
0.996

−0.994
−0.991
-1.003

Fig. 4(d-f)
Fig. 5(a-c)
Fig. 5(d-f)
Fig. 6

1.005
1.005
0.993
1.007

-0.997
-0.994
-1.002
−1.001 


