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Note S1
As shown in Fig. 3c, the deconvoluted O 1s XPS spectrum of PBC@FeF,@C exhibits

four peaks located at approximate 530.1, 531.2, 532.3, and 533.7 eV, assignable to Fe-
0O-C, O=C, O-C, and HO-C bonds, respectively. By comparison, PBC@FeF, bears two
peaks at 531.1 and 532.3 eV, corresponding to O=C and O-C bonds, respectively (Fig.
3d). In addition to validating Fe-O-C bonds in PBC@FeF,@C, these peaks depict the
presence of oxygen-containing functionalities within the carbon component of both
PBC@FeF,@C and PBC@FeF,. This fact is mostly associated with the used carbon
precursors (that is, BC and PDA in the former, and BC in the latter). In comparison
with PBC@FeF,, the additional occurrence of HO-C bonds can be attributed to the
PDA carbon introduced. This is also the case for FeF,@C (Fig. S6). The existence of
these residual oxygen-containing functionalities in all the three cases is also verified by
deconvoluting their C 1s spectra, in which three peaks consistently appear at
approximate 284.7, 286.5, and 289.2 eV, characteristic of C-C/C=C C-O, and O=C-O
bonds, respectively. Notably, a significant peak can be distinguished at 285.6 eV in the
C 1s XPS spectrum of PBC@FeF,@C (Fig. 3¢), which can be assigned to C-N bonds,
similar to that of FeF,@C (Fig. S6). In sharp contrast, the corresponding peak is nearly
negligible at the same binding energy in PBC@FeF, (Fig. 3d and Fig. S5), implying
the absence of nitrogen. Furthermore, deconvolution of the N 1s XPS spectrum of
PBC@FeF,@C reveals three component peaks at 398.5, 400.2, and 401.4 eV, which
can be ascribed to pyridinic N, pyrrolic N, and graphitic N species, respectively (Fig.
S5a). This scenario is similarly found in FeF,@C (Figure S6). Definitely, these findings
manifest the nitrogen-doped nature of the PDA-derived carbon in PBC@FeF,@C as
well as FeF,@C.



Supporting Figure

Fig. S1. SEM images of FeF,@C.
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Fig. S2. SEM images of PBC@FeF,@C before carbonization.
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Fig. S3. TGA curves. (a) PBC@FeF,@wC. (b) PBC@FeF,. (c) FeF,@C.
(d)PBC@FeF,@PDA.



Fig. S4. TEM characterizations of FeF,@C. (a) TEM images. (b) STEM and elemental
mapping images.
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Fig. S6. XPS survey as well as high-resolution Fe 2p, O 1s, C 1s, F 1s, and N 1s spectra

of FeF,@C.
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Fig. S8. Galvanostatic charge/discharge profiles at annotated rates. (a) PBC@FeF,@C.
(b) PBC@FeF,. (c) FeF,@C. (d) PBC@FeF,@C before and after rate alternations.
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Fig. S9. Cycling performance at annotated rates of PBC@FeF,@C and control samples
in a voltage range of 1.0-3.8 V.

11



a 40 - b 40

PBC@FeF,@C : PBC@FeF,
3.5 : 3.5+
3.01 3.0
2.5 2.5
s s
o 2.0 o 2.04
g g
S 1.5 3rd ° 1.5 3rd
> 10th = 10th
1.0 30th : 1.0 30th
50th 300th : 50th
0.5 100th 400th : 0.5 100th
200th ——500th :
0.0 - T : T - T - - . 0.0 T T - T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Normalized capacity Normalized capacity

FeF,@C
3.5+

3.04

2.54

=
o 2.04
=]
8
S 1.5 3rd
= 10th
1.0 30th :
50th 300th
0.5 100th 400th :
200th ——500th |
0.0 T T T T T
0.0 0.2 0.4 06 0.8 1.0

Normalized capacity

Fig. S10. Galvanostatic charge/discharge profiles with normalized capacity at
annotated cycles, demonstrating the variation of overpotential upon cycling. (a)
PBC@FeF,@C. (b) PBC@FeF,. (c) FeF,@C.
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Fig. S11. Galvanostatic intermittent titration technique (GITT) measurements. (a)
PBC@FeF,@C. (b) PBC@FeF,. (¢c) FeF,@C. The hollow circles represent quasi-
equilibrium potentials after relaxation at open circuit for 2 h, which is close to
thermodynamic values. At the 50 % state of charge/discharge, it is obvious that the
quasi-thermodynamic potential hysteresis of PBC@FeF,@C is only 0.57 V, lower than
0.97 V for PBC@FeF, as well as 0.63 V for FeF,@C.
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Fig. S12. Nyquist plots, fitting circuit, and resistances of PBC@FeF,@C and control
samples, obtained from EIS measurements. (a) Nyquist plots. (b) Equivalent circuit
diagram. (c) Fitted R-values for annotated cycles. Upon cycling, PBC@FeF,@C
invariably exhibits significantly smaller system resistance, CEI resistance, and charge
transfer resistance, when being compared to PBC@FeF, and Fe@F,.
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Fig. S13. Lithium diffusion coefficients (D) during discharging (lithiation) and
charging (delithiation).
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Fig. S14. SEM images, EDX spectrum, and elemental mapping images of cycled
separators. (a) Pairing with PBC@FeF,@C. (b) Pairing with PBC@FeF,.
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Fig. S15. SEM image and EDX spectrum of cycled Li foils. (a) Pairing with
PBC@FeF,@C. (b) Pairing with PBC@FeF,.
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Fig. S16. Determination of Fe species by coloration. (a) Annotated separators immersed
in 2 ml of 0.1 M HCl aqueous solution. (b) The solutions with adding 2 drops of 0.2 M
K;3Fe(CN)g aqueous solution and keeping in the dark for 12 h before drying. (c, d) Photo
images of treated separators by the above method with (c) Front side and (d) Back side.
The intense blue coloration observed in cycled separator for PBC@FeF, arises from
the reaction of ferricyanide ions (Fe(CN)¢*) with ferrous ions (Fe?*) in acidic solution
to produce insoluble blue precipitate (Fes;[Fe(CN)gl,), referred to as

2+ 3- _
3Fe” " + Z[F e(CN )6] =F e3[F e(CN )G]ZL. By contrast, there is no blue staining in

the cycled separator with PBC@FeF,@C, identifying the absence of any dissolved Fe
species.
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Fig. S17. XRD patterns of cycled PBC@FeF,@C and PBC@FeF,. The typical
reflections of FeF, can be readily recognized in PBC@FeF,@C, without accompanying
metallic Fe, in opposition to the case of cycled PBC@FeF,. Note that the appearance
of lithium fluoride (LiF) in both cases is related to the CEI formed during cycling. Note
that the peak at ~65° partially originates from the Al foil used in the cathodes.
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Fig. S18. Survey as well as C Is, N 1s, O 1Is, F 1s and S 2p XPS spectra for cycled
PBC@FeF,@C.
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Fig. S19. Survey as well as C 1s, N 1s, O 1Is, F 1s and S 2p XPS spectra for cycled
PBC@FeF,.
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Fig. S20. Schematic description of the stabilization mechanism. (a) PBC@FeF,@C, (b)
PBC@FeF,. The covalently-bound PDA carbon in PBC@FeF2@C fosters inorganic-
dominated CEI, which collaboratively forms a robust and efficient barrier restraining
the undesirable material/electrolyte interaction and intractable dissolution. It is
noteworthy that the material dimension and interfacial thickness is not scaled.
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Table S1. Specification and electrochemical performance. Some representative FeF,
cathode materials evaluated at similar testing conditions to this work are presented

along with PBC@FeF,@C.
We.lght Materi .
ratio al ratio Volt | Curre | Capacity
(%) of (%) in age | nt (mAh g1)
No. | Material FeF, ° Electrolyte | win | rate @ Ref.
. the .
relative electro dow | (mA | achieved n
to the w |gh cycles
. de
material
1 1 M LiPFg in
Porous carbon- DEC/DMC 1.5~
1 12 2 2
confined FeF, 75 85 (1:1)  with | 4 50 0@200 |3
VC
2 CF, derived carbon— 1M LiPFgin | 1.3~
FeF, composite / %0 EC/DMC 4.3 227 |3B5@25 |36
3 1 M LiPF4in | 1.3~
Carbon coated FeF, | 67 70 EC/DMC 47 300 330 @ 100 | 28
4 FeF, film  with . .
. 1 M LiPF¢ in | 1~4.
vertically structured | / / EC/DMC 5 12.5 320@ 10 |35
pores
5 Carbon  nanotube . . 50 263 @ 50
1 M LiPF 1~4.
encapsulated  FeF, | 71 80 Ee /Dl\l/I o n 500 [124@s0 |33
nanorods 1000 |92 @ 50
6 FeF,-carbon  core- 1 M LiPFgin | 1.3~
. 62 90 30 350 @50 |34
shell composite EC/DMC 4.2 @
7 . 1 M LiClO4 | 1.2~
Ni@FeF,@Al,O; / / W EC/DMC | 4.2 200 250 @ 100 | 31
8 Artificial ~ cathode
solid electrolyte 1 M LiTFSI
100 0 1~4 | 100 314 @ 100 | 2
interphase-involved ! in FEC/EMC @ !
Fer
9 Dendrite-structured 1M LiPFsin | 1.5~
FeF, 100 70 EC/DEC 4 200 145 @ 250 | 29
10 | Single-crystalline 1M LiFSI'in | 1.2~ | 230~3
1 2 14
FeF, nanorods 00 70 Pyr 5FSI 4 00 300 @200
11 | Porous reduced 1 M LiTFSI
graphene oxide- | / 70 in 1~4 | 80 400 @ 50 |30
FeF,@carbon DOL/DME
12 In
1 M LiFSI in | 1~3. | 500 290 @ 500
PBC@FeF,@C 79 80 IFStin | 1~3 this
DME > 12000 | 211 @ 102 | ywork
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