Supporting information

“Strain-dependent Magnetic Ordering Switching in 2D AFM Ternary V-based Chalcogenides Monolayers”

Kaijuan Panga, Xiaodong Xub*, Yadong Weib, Tao Yinga, Bo Gaoa, Weiqi Lia*, Yongyuan Jianga, c, d *

a School of Physics, Harbin Institute of Technology, Harbin 150001, China
b School of Material Science and Engineering, Harbin Institute of Technology, Harbin 150001, China
c Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan 030006, China
d Key Lab of Micro-Optics and Photonic Technology of Heilongjiang Province, Harbin 150001, China

Email: xuxd@hit.edu.cn
Email: jiangyy@hit.edu.cn
Email: tcchiweiqi@hit.edu.cn
Fig. S1 (a) The polytypic structures of VAl$_2$Se$_4$ monolayer for different H and T phases. (b) Relative energy (ΔE) of different phases. Light red, yellow and light blue spheres represent V, Se and Al atoms, respectively.

Fig. S2. The phonon spectrums (a-c) and AIMD simulation (d-f) at 300K. (a) and (d) VAl$_2$Se$_4$ monolayer; (b) and (e) VAIGaSe$_4$ monolayers; (c) and (f) VGa$_2$Se$_4$ monolayer. The inset represents the configuration snapshots (one at the beginning and one at the end).

The Young’s modulus (Y) of 2D materials can be described in the form of polar coordinates, which can be expressed as1,2

\[
Y(\theta) = \frac{c_{11}c_{22} - c_{12}^2}{c_{11} \sin^4 \theta + c_{22} - 2c_{12} \sin^2 \theta \cos^2 \theta + 2c_{12} \cos^2 \theta}
\]

where c_{ij} and θ represent the elastic constants and the angle with respect to the x-axis, respectively.
Table S1. The mechanical properties of VXYSe₄(X, Y = Al, Ga). Calculated elastic constants (cᵢⱼ), Young’s modulus (Y in N/m).

<table>
<thead>
<tr>
<th>Structure</th>
<th>c₁₁</th>
<th>c₁₂</th>
<th>c₂₂</th>
<th>c₆₆</th>
<th>Y(0)/(N/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VAl₂Se₄</td>
<td>69.683</td>
<td>22.027</td>
<td>69.683</td>
<td>0.135</td>
<td>62.720</td>
</tr>
<tr>
<td>VAlGaSe₄</td>
<td>66.930</td>
<td>22.633</td>
<td>66.930</td>
<td>0.239</td>
<td>59.276</td>
</tr>
<tr>
<td>VGa₂Se₄</td>
<td>65.748</td>
<td>21.083</td>
<td>65.748</td>
<td>0.272</td>
<td>58.987</td>
</tr>
</tbody>
</table>

Fig. S3 The planar average of the electrostatic potential of (a) VAl₂Se₄ monolayer; (b) VAlGaSe₄ monolayer; (c) VGa₂Se₄ monolayer. The purple, yellow, light red and light blue balls represent Ga, Se, V and Al atoms, respectively.

Fig. S4 AFM direct interactions of (a) d_yz-d_yz orbital exchange; (b) d_xz-d_xz orbital exchange; (c) d_yz-d_xy orbital exchange. (d) FM superexchange interactions of d-p-d orbital. The pink and green arrows represent spin-up and spin-down electron, respectively.

Fig. S5 The orbital-resolved band structure of (a) VAl₂Se₄ monolayer; (b) VAlGaSe₄ monolayers; (c) VGa₂Se₄ monolayer. The green, red, blue, orange and purple circles represent Se-p, Al-p, Ga-p, V-t₂g (dₓ²−y², dₓz, dᵧz) and V-e₉ (dₓ²−y², dz²), respectively. The spin-up and spin-down channels are expressed by the pink and cyan arrows.
Fig. S6 The electronic band structure of 2D VXYSe$_4$ (X, Y = Al, Ga) with spin-orbit coupling (SOC). (a) VAl$_2$Se$_4$; (b)VAlGaSe$_4$; (c)VGa$_2$Se$_4$.

Table S2 The band gap of 2D VXYSe$_4$ (X, Y = Al, Ga) with and without spin-orbit coupling (SOC)

<table>
<thead>
<tr>
<th></th>
<th>VAl$_2$Se$_4$</th>
<th>VAlGaSe$_4$</th>
<th>VGa$_2$Se$_4$</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBE+U (eV)</td>
<td>0.8625</td>
<td>0.4276</td>
<td>0.3266</td>
</tr>
<tr>
<td>PBE+U+SOC (eV)</td>
<td>0.8614</td>
<td>0.4271</td>
<td>0.3231</td>
</tr>
</tbody>
</table>

Part I. Calculations of the magnetic interaction parameters J and A.

According to the Heisenberg model, the four different magnetic configurations in Figure.1(c-f) can be expressed as

\[
\begin{align*}
E_{F\text{M}} &= E_0 + 4S^2(-6J_1 - 6J_2) \\
E_{AF\text{M}1} &= E_0 + 4S^2(2J_1 + 2J_2) \\
E_{AF\text{M}2} &= E_0 + 4S^2(2J_1 - 2J_2) \\
E_{AF\text{M}3} &= E_0 + 4S^2(-2J_1 + 2J_2)
\end{align*}
\]

(1.1)

Here E_0 is total energy of the system without magnetic interactions, $|S| = \frac{3}{2}$ for V cation.

Fig. S7. The (a) bond length and (b) bond angle of 2D VXYSe$_4$ (X, Y = Al, Ga) monolayers as a function of strain.
Fig. S8 The band structure of VAl$_2$Se$_4$ monolayer under biaxial strains of (a) -6%, (b) -4%, (c) -2%, (d) 2%, (e) 4%, (f) 6%. The spin-up and spin-down channels are expressed by the blue and red lines, respectively.

Fig. S9 The band structure of VAlGaSe$_4$ monolayer under biaxial strains of (a) -6%, (b) -4%, (c) -2%, (d) 2%, (e) 4%, (f) 6%. The spin-up and spin-down channels are expressed by the blue and red lines, respectively.
Fig. S10 The band structure of VGa$_2$Se$_4$ monolayer under biaxial strains of (a) -6%, (b) -4%, (c) -2%, (d) 2%, (e) 4%, (f) 6%. The spin-up and spin-down channels are expressed by the blue and red lines, respectively.

Fig. S11. The first nearest-neighboring magnetic exchange parameters (purple line) and the second nearest-neighboring magnetic exchange parameters (orange line) of 2D (a) VAl$_2$Se$_4$; (b) VAlGaSe$_4$; (c) VGa$_2$Se$_4$ monolayers under different strain.

Reference