Electronic Supplementary Information

Three-dimensional Ni foam supported NiCoO₂@Co₃O₄ nanowire-on-nanosheet arrays with rich oxygen vacancies as superior bifunctional catalytic electrodes for overall water splitting

Yixiang Pan,^{‡a} Xiaoyan Wang,^{‡b} Hua Lin,^c Qinghua Xia,^a Maoxiang Jing,^d Weiyong Yuan^{*a,e} and Chang Ming Li^f

^aNingbo Innovation Centre, Zhejiang University, Ningbo 315100, China

^bResearch Center for Environmental and Energy Catalysis, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China

^cSchool of Materials & Energy, Southwest University, Chongqing 400715, China University, Zhenjiang 212013, China

^dInstitute for Advanced Materials, Jiangsu University, Zhenjiang 212013, China

^eCollege of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China

^fInstitute of Materials Science and Devices, Suzhou University of Science and Technology, Suzhou 215009, China

‡ These authors contributed equally to this work.

Contents

1. N₂ adsorption–desorption isotherm and pore size distribution of NF@NiCoO₂ NSA and NF@NiCoO₂ NSA@Co₃O₄ NWA (Figure S1).

2. XRD patterns of NF@NiCoO₂ NSA and NF@NiCoO₂ NSA@Co₃O₄ NWA before calcination (Figure S2).

3. SAED pattern of NF@NiCoO₂ NSA@Co₃O₄ NWA (Figure S3).

4. XPS survey spectra of NF@NiCoO₂ NSA and NF@NiCoO₂ NSA@Co₃O₄ NWA (Figure S4).

5. The performance of representative OER catalysts measured in 1.0 M KOH (Table

S1).

6. The performance of representative HER catalysts measured in 1.0 M KOH (Table S2).

7. Charging current density differences of NF, NF@NiCoO₂ NSA, NF@NiCoO₂ NSA@Co₃O₄ NWA and NF@Co₃O₄ NWA versus scan rate curves and typical CV curves at different scan rates for NF@NiCoO₂ NSA@Co₃O₄ NWA (Figure S5).

8. The performance of representative water splitting catalysts measured in 1.0 M KOH (Table S3).

9. LSV curves of the water electrolyzer before and after the stability test (Figure S6).

10. FESEM image of NF@NiCoO₂ NSA@Co₃O₄ NWA after the stability test (Figure S7).

Figure S1. N₂ adsorption–desorption isotherm (A, B) and pore size distribution (A inset, B inset) of NF@NiCoO₂ NSA (A) and NF@NiCoO₂ NSA@Co₃O₄ NWA (B).

Figure S2. XRD patterns of NF@NiCoO₂ NSA (A) and NF@NiCoO₂ NSA@Co₃O₄ NWA (B) before calcination. The peaks without labeling are from cubic Ni (JCPDS No. 01-1258). \blacklozenge and \ast represent characteristic peaks of rhombohedral cobalt nickel carbonate hydroxide (JCPDS card No. 33-0429) and orthorhombic cobalt carbonate hydroxide (JCPDS card no. 048-0083), respectively.

Figure S3. SAED pattern of NF@NiCoO₂ NSA@Co₃O₄ NWA. • and • represent characteristic peaks of cubic NiCoO₂ (JCPDS No. 10-0188) and cubic Co₃O₄ (JCPDS No. 42-1467), respectively.

Figure S4. XPS survey spectra of NF@NiCoO₂ NSA (A) and NF@NiCoO₂ NSA@Co₃O₄ NWA (B).

catalyst	overpotential@10 mA cm ⁻² (mV)	Tafel slope (mV dec ⁻¹)	reference ¹⁻³⁸
a-Fe ₂ O ₃	275	73.63	[1]
$Mn_3O_4@Cu(OH)_2-2$	314	97	[2]
Fe ₂ O ₃ -Mn ₂ O ₃	350	70	[3]
$Fe_{0.5}Co_{0.5}MoO_{4-x}S_x$	263	87	[4]
Co2Mo3O8@NC-800	331	87.5	[5]
NiO/NiCo ₂ O ₄	357	130	[6]
Cu/Cu ₂ O/CuO	289	73.1	[7]
NiCo ₂ O ₄ -CN-180	383	53.5	[8]
Cu _{0.5} Co _{2.5} O ₄	285	79.2	[9]
Ar-NiCo ₂ O ₄ S	256	51.1	[10]

NiO/CN-2:1	261	58.92	[11]
Ni _x Co _{3-x} O ₄ /NF	287	88	[12]
CoO hexagrams	269	64.4	[13]
Co _{0.708} Fe _{0.292} WO ₄	327	53	[14]
Ce-MnCo ₂ O ₄ -3%	390	125	[15]
NiS ₂ @GO	294	54	[16]
MoS ₂ -Co ₉ S ₈ -NC	230	77	[17]
Co ₉ S ₈ /Co-NCNT-0.05	450	115.6	[18]
NiP/NiFeP/C	250	58	[19]
Co-Ni ₃ S ₂ /NF	274	199	[20]
S, N-CNTs/CoS2@Co	340	76.1	[21]
Se/Fe-Co ₉ S ₈ -0.14	288	51.29	[22]
Fe ₃ O ₄ /Co ₃ S ₄	270	56	[23]
NH ₄ CoPO ₄ •H ₂ O/Co	254	64.4	[24]
$Fe_{2.95}(PO_4)_2(OH)_2$	281	46.48	[25]
Cu _x SNiMn LDH/NF	263	57.79	[26]
Ni _{0.65} Fe _{0.35} P	270	60	[27]
Ni ₂ P@NC	320	50	[28]
CoMoN _x -500 NSAs/NF	231	50.6	[29]
N–NiCo-LDH	250	75	[30]
D-Ni ₃ N QDs/VN	226	54	[31]
Mo ₂ N–MoS ₂ (1:1) MCNFs	270	57.2	[32]
Co ₃ FeN _x -10/NC LACC	270	52.5	[33]
Co ₃ O ₄ /NC	309	89	[34]
Fe-doped Co ₉ S ₈ @CoO	296	65	[35]
RuO ₂	267	61	[36]
IrO ₂ /C	360	82	[37]
Ir/C	N.A.	77	[38]
NF@NiCoO2 NSA@Co3O4	221.8	46.2	This work
NWA			

catalyst	overpotential@10 mA cm ⁻² (mV)	Tafel slope (mV dec ⁻¹)	reference ^{10, 15,} 18, 29, 32, 39-61
Ar-NiCo ₂ O ₄ S	137	121.4	[10]
Ce-MnCo ₂ O ₄ -3%	389	96	[15]
Co ₉ S ₈ /Co-NCNT-0.05	196	84.94	[18]
CoMoN _x -600 NSAs/NF	160	127.2	[29]
Mo ₂ N–MoS ₂ (1:1) MCNFs	131	68.9	[32]
CoMoO ₄ /NF	242	132.4	[39]
C@CoO/CC	120	129	[40]
Ni-NiFe ₂ O ₄ @C	217	96	[41]
NiMoO ₄	406	130	[42]
BaMoO ₃	336	110	[43]
NiTiO ₃	356	130	[44]
MoO ₂	271	93.2	[45]
Co ₃ O ₄ @MoS ₂	158	148	[46]
Amorphous Fe ₂ O ₃	325	327.8	[47]
NiCo ₂ O ₄ @CoMoO ₄ /NF-7	121	77	[48]
Fe _{1.89} Mo _{4.11} O ₇ /MoO ₂	197	79	[49]
NiP ₂ /NiO NRs	131	94	[50]
NiO NRs-m-Ov	110	100	[51]
N droped Ni ₃ S ₂	155	113	[52]
Ni ₃ S ₂ /NF	288	120	[53]
(Ni _{0 33} Co _{0 67})S ₂ NWs/CC	156	127	[54]

CoS _x /NCS	330	146	[55]
CoS ₂ HNSs	193	100	[56]
CNT@NPC-900	304	105	[57]
FeP NPs@NPC	214	82	[58]
FeNi ₃ N-h	185	134.7	[59]
Co(OH)2@P-NiCo-LDH	226	134	[60]
Am FePO ₄ /NF	123	104.49	[61]
NF@NiCoO2 NSA@Co3O4	122.7	72.2	This work
NWA			

Figure S5. (A) Charging current density differences of NF, NF@NiCoO₂ NSA, NF@NiCoO₂ NSA@Co₃O₄ NWA and NF@Co₃O₄ NWA versus scan rates. (B) Typical CV curves at different scan rates for NF@NiCoO₂ NSA@Co₃O₄ NWA (CV curves at different scan rates for other samples are not shown for brevity).

Table S3. The performance of representative water splitting catalysts measured in 1.0M KOH.

catalyst	voltage /V (10 mA cm^{-2})	reference ^{10, 17,} 21, 29, 30, 32, 41, 54, 59, 62-81
Ar-NiCo ₂ O ₄ S//Ar-NiCo ₂ O ₄ S	1.63	[10]
MoS ₂ -Co ₉ S ₈ -NC//MoS ₂ -Co ₉ S ₈ -NC	1.63	[17]
S, N-CNTs/CoS ₂ @Co//S, N-CNTs/CoS ₂ @Co	1.633	[21]
CoMoN _x -500 NSAs/NF//CoMoN _x -500 NSAs/NF	1.55	[29]
N-NiCo-LDH//N-NiCo-LDH	1.55	[30]
Mo ₂ N–MoS ₂ (1:1) MCNFs//Mo ₂ N–MoS ₂ (1:1) MCNFs	1.63	[32]
Ni-NiFe ₂ O ₄ @C//Ni-NiFe ₂ O ₄ @C	1.57	[41]
(Ni _{0.33} Co _{0.67})S ₂ NWs/CC//(Ni _{0.33} Co _{0.67})S ₂ NWs/CC	1.57	[54]
FeNi ₃ N-h//FeNi ₃ N-h	1.63	[59]
RuO ₂ //Pt/C	1.57	[62]
CoS _{0.46} P _{0.54} //CoS _{0.46} P _{0.54}	1.62	[63]
Co ₃ S ₄ -MoS ₂ //Co ₃ S ₄ -MoS ₂	1.61	[64]
IrO ₂ /NF//Pt/C/NF	1.66	[65]
Co@CoMoO _x -a-CrOOH//Co@CoMoO _x -a-CrOOH	1.57	[66]
NCGC//NCGC	1.68	[67]
Ni/Mo ₂ C(1:2)-NCNFs//Ni/Mo ₂ C(1:2)-NCNFs	1.64	[68]
mac-CoO@Co/NGC NSAs//mac-CoO@Co/NGC NSAs	1.62	[69]
Co ₉ S ₈ /HWS ₂ /CNFs//Co ₉ S ₈ /HWS ₂ /CNFs	1.60	[70]
N-Ni ₃ S ₂ @C/NF//N-Ni ₃ S ₂ @C/NF	1.57	[71]

C/NiFeP NSs//C/NiFeP NSs	1.63	[72]
NiFeP/NiP/PP//NiFeP/NiP/PP	1.613	[73]
Ni ₃ S ₂ -Ni ₂ P/NF//Ni ₃ S ₂ -Ni ₂ P/NF	1.58	[74]
NiFeP@N-CS//NiFeP@N-CS	1.57	[75]
NiFeP@NiP@NF//NiFeP@NiP@NF	1.56	[76]
CoFeN _x -500 HNAs/NF//CoFeN _x -500 HNAs/NF	1.592	[77]
CoP/CN@MoS ₂ //CoP/CN@MoS ₂	1.61	[78]
Co-NCNTFs//NF//Co-NCNTFs//NF	1.62	[79]
CoFeP@NSOC//CoFeP@NSOC	1.62	[80]
a-Ni _{0.65} Fe _{0.35} (OH) ₂ //a-Ni _{0.65} Fe _{0.35} (OH) ₂	1.60	[81]
NiCo-NiCoO2@Cu2O@CF	1.69	[82]
carbon-incorporated NiO/Co ₃ O ₄ concave surface microcubes	1.63	[83]
CoO _x /CN _x	1.93	[84]
Mo ₂ C-CoO@N-CNFs	1.56	[85]
CoO/MoS ₂ /CC	1.65	[86]
NF-NiCo-Co//NF-NiCo-Co	1.55	This work

Figure S6. LSV curves of the water electrolyzer before and after the stability test.

Figure S7 FESEM image of NF@NiCoO_2 NSA@Co_3O_4 NWA after the stability test.

References

(1) Xu, Q.-Q.; Huo, W.; Li, S. S.; Fang, J. H.; Li, L.; Zhang, B. Y.; Zhang, F.; Zhang, Y. X.; Li, S. W. *Appl. Surf. Sci.* **2020**, *533*, 147368.

(2) Ge, Z.; Fu, B.; Li, X.; Zhao, J.; Ma, B.; Luo, Z.; Chen, Y. J. Power Sources 2020, 476, 228731.

(3) Eslami, H.; Esmaeili, A.; Ehrampoush, M. H.; Ebrahimi, A. A.; Taghavi, M.; Khosravi, R. J. Water Process. Eng. 2020, 36, 101342.

(4) Fei, B.; Chen, Z.; Ha, Y.; Wang, R.; Yang, H.; Xu, H.; Wu, R. Chem. Eng. J. 2020, 394, 124926.

(5) Ouyang, T.; Wang, X. T.; Mai, X. Q.; Chen, A. N.; Tang, Z. Y.; Liu, Z. Q. Angew. Chem. Int. Ed. Engl. 2020, 59, 11948-11957.

(6) Zhang, Z.; Liang, X.; Li, J.; Qian, J.; Liu, Y.; Yang, S.; Wang, Y.; Gao, D.; Xue, D. ACS Appl. Mater. Interfaces **2020**, *12*, 21661-21669.

(7) Li, R.; Xu, J.; Zeng, R.; Pan, Q.; Tang, T.; Luo, W. J. Power Sources 2020, 457, 228058.

(8) Li, Y.; Zhou, Z.; Cheng, G.; Han, S.; Zhou, J.; Yuan, J.; Sun, M.; Yu, L. *Electrochim. Acta* **2020**, *341*, 135997.

(9) Jang, M. J.; Yang, J.; Lee, J.; Park, Y. S.; Jeong, J.; Park, S. M.; Jeong, J. Y.; Yin,
Y.; Seo, M. H.; Choi, S. M.; Lee, K. H. J. Mater. Chem. A 2020, 8, 4290-4299.

(10) Lin, J. H.; Yan, Y. T.; Xu, T. X.; Qu, C. Q.; Li, J.; Cao, J.; Feng, J. C.; Qi, J. L. J. Colloid Interface Sci. 2020, 560, 34-39.

(11) Liao, C.; Yang, B.; Zhang, N.; Liu, M.; Chen, G.; Jiang, X.; Chen, G.; Yang, J.; Liu, X.; Chan, T. S.; Lu, Y. J.; Ma, R.; Zhou, W. *Adv. Funct. Mater.* **2019**, *29*, 1904020.

(12) Shen, Y.; Guo, S. G.; Du, F.; Yuan, X. B.; Zhang, Y.; Hu, J.; Shen, Q.; Luo, W.; Alsaedi, A.; Hayat, T.; Wen, G.; Li, G. L.; Zhou, Y.; Zou, Z. *Nanoscale* **2019**, *11*, 11765-11773.

(13) Liang, Z.; Huang, Z.; Yuan, H.; Yang, Z.; Zhang, C.; Xu, Y.; Zhang, W.; Zheng, H.; Cao, R. *Chem. Sci.* 2018, *9*, 6961-6968.

(14) Shao, W.; Xia, Y.; Luo, X.; Bai, L.; Zhang, J.; Sun, G.; Xie, C.; Zhang, X.; Yan, W.; Xie, Y. *Nano Energy* 2018, *50*, 717-722.

(15) Huang, X.; Zheng, H.; Lu, G.; Wang, P.; Xing, L.; Wang, J.; Wang, G. ACS Sustain. Chem. Eng. 2018, 7, 1169-1177.

(16) Zhang, D.; Mou, H.; Chen, L.; Wang, D.; Song, C. Appl. Surf. Sci. 2020, 510, 145483.

(17) Huang, N.; Yan, S.; Zhang, M.; Ding, Y.; Yang, L.; Sun, P.; Sun, X. *Electrochim. Acta* **2019**, *327*, 134942.

(18) Liang, D.; Mao, J.; Liu, P.; Yan, J.; Song, W. J. Colloid Interface Sci. 2019, 557, 291-

300.

(19) Weng, B.; Wang, X.; Grice, C. R.; Xu, F.; Yan, Y. J. Mater. Chem. A 2019, 7, 7168-7178.

(20) Wang, X.; Wang, S.; Chen, S.; He, P.; Xu, Y.; Jia, L.; Yang, D.; He, X.; Deng, H.; Jia, B.; Zhang, H.; Liu, H. *Int. J. Hydrogen Energy* **2020**, *45*, 19304-19312.

(21) Wang, J. Y.; Ouyang, T.; Li, N.; Ma, T.; Liu, Z. Q. Sci. Bull. 2018, 63, 1130-1140.

(22) Zhang, D.; Zhang, J.; Fu, X.; Pan, J.; Wang, Y.; Li, J.; Jiang, B.; Liu, R.; Wang, X.; Zhang, X.; Zhang, R.; Qiao, Z. A. *Nanotechnology* 2020, *31*, 334001.

(23) Du, J.; Zhang, T.; Xing, J.; Xu, C. J. Mater. Chem. A 2017, 5, 9210-9216.

(24) Che, Q.; Xie, X.; Ma, Q.; Wang, J.; Zhu, Y.; Shi, R.; Yang, P. J. Energy Chem. 2020, 51, 167-174.

(25) Khalate, S. A.; Kadam, S. A.; Ma, Y. R.; Pujari, S. S.; Marje, S. J.; Katkar, P. K.; Lokhande, A. C.; Patil, U. M. *Electrochimi. Acta* **2019**, *319*, 118-128.

(26) Gao, G.; Wang, K.; Wang, X. Int. J. Hydrogen Energy 2023, 48, 1347-1359.

(27) Liu, Z.; Zhang, G.; Zhang, K.; Liu, H.; Qu, J. ACS Sustain. Chem. Eng. 2018, 6, 7206-7211.

(28) Pu, Z.; Zhang, C.; Amiinu, I. S.; Li, W.; Wu, L.; Mu, S. ACS Appl. Mater. Interfaces **2017**, *9*, 16187-16193.

(29) Lu, Y.; Li, Z.; Xu, Y.; Tang, L.; Xu, S.; Li, D.; Zhu, J.; Jiang, D. Chem. Eng. J. 2021, 411, 128433.

(30) Wen, Y.; Qi, J.; Wei, P.; Kang, X.; Li, X. J. Mater. Chem. A 2021, 9, 10260-10269.

(31) Zhang, X.; Fu, W.; Tian, W.; Wan, J.; Zhang, H.; Wang, Y. J. Mater. Chem. A 2020, 8, 21173-21180.

(32) Xie, D.; Yang, G.; Yu, D.; Hao, Y.; Han, S.; Cheng, Y.; Hu, F.; Li, L.; Wei, H.; Ji, C.; Peng, S. *ACS Sustain. Chem. Eng.* **2020**, *8*, 14179-14189.

(33) Zhu, J.; Liu, C.; Sun, J.; Xing, Y.; Quan, B.; Li, D.; Jiang, D. *Electrochim. Acta* **2020**, *354*, 136629.

(34) Li, S.; Kuang, R.; Kong, X. Z.; Zhu, X.; Jiang, X. Chin. J. Chem. Eng. 2022, 52, 10-18.

(35) Wang, T.; Li, C.; Liao, X.; Li, Q.; Hu, W.; Chen, Y.; Yuan, W.; Lin, H. International J. Hydrogen Energy **2022**, *47*, 21182-21190.

(36) Zhao, C.; Li, N.; Zhang, R.; Zhu, Z.; Lin, J.; Zhang, K.; Zhao, C. ACS Appl. Mater. Interfaces **2019**, *11*, 47858-47867.

(37) Dai, Z.; Geng, H.; Wang, J.; Luo, Y.; Li, B.; Zong, Y.; Yang, J.; Guo, Y.; Zheng, Y.; Wang, X.; Yan, Q. *ACS Nano* **2017**, *11*, 11031-11040.

(38) Jia, R.; Xia, M.; Tang, L.; Yu, L.; Yang, Y.; Zhang, Y.; Bo, X.; Zhou, S.; Tu, Y.; Deng, D. *ACS Catal.* **2022**, *12*, 13513-13522.

(39) Zhong, C.; Han, Z.; Wang, T.; Wang, Q.; Shen, Z.; Zhou, Q.; Wang, J.; Zhang, S.; Jin, X.; Li, S.; Wang, P.; Gao, D.; Zhou, Y.; Zhang, H. *J. Mater. Chem. A* **2020**, *8*, 10831-10838.

(40) Jin, W.; Guo, X.; Zhang, J.; Zheng, L.; Liu, F.; Hu, Y.; Mao, J.; Liu, H.; Xue, Y.; Tang, C. *Catal. Sci. Technol.* **2019**, *9*, 6957-6964.

(41) Zhang, J.; Jiang, Y.; Wang, Y.; Yu, C.; Cui, J.; Wu, J.; Shu, X.; Qin, Y.; Sun, J.; Yan, J.; Zheng, H.; Zhang, Y.; Wu, Y. *Electrochim. Acta* **2019**, *321*, 134652.

(42) Xiong, T.; Huang, B.; Wei, J.; Yao, X.; Xiao, R.; Zhu, Z.; Yang, F.; Huang, Y.; Yang, H.; Balogun, M. S. *J. Energy Chem.* **2022**, *67*, 805-813.

(43) Xu, X.; Pan, Y.; Zhong, Y.; Ge, L.; Jiang, S. P.; Shao, Z. Compos. B. Eng. 2020, 198, 108214.

(44) Cheng, J.; Liu, P.; Peng, T.; Liu, Q.; Chen, W.; Liu, B.; Yuan, Y.; Zhang, W.; Song,
F.; Gu, J.; Zhang, D. J. Mater. Chem. A 2020, 8, 14908-14914.

(45) Yang, G.; Jiao, Y.; Yan, H.; Xie, Y.; Wu, A.; Dong, X.; Guo, D.; Tian, C.; Fu, H. *Adv. Mater.* **2020**, *32*, 2000455.

(46) Zhang, C.; Liu, Y.; Wang, J.; Li, W.; Wang, Y.; Qin, G.; Lv, Z. *Appl. Surf. Sci.* 2022, *595*, 153532.

(47) Cui, F.; Tang, L.; Han, W.; Liu, Y. T.; Kim, H. Y.; Yu, J.; Ding, B. *Compos. Commun.* **2020**, *22*, 100470.

(48) Gong, Y.; Yang, Z.; Lin, Y.; Wang, J.; Pan, H.; Xu, Z. J. Mater. Chem. A 2018, 6, 16950-16958.

(49) Hao, Z.; Yang, S.; Niu, J.; Fang, Z.; Liu, L.; Dong, Q.; Song, S.; Zhao, Y. Chem. Sci. 2018, 9, 5640-5645.

(50) Wu, M. Y.; Da, P. F.; Zhang, T.; Mao, J.; Liu, H.; Ling, T. *ACS Appl. Mater. Interfaces* **2018**, *10*, 17896-17902.

(51) Zhang, T.; Wu, M. Y.; Yan, D. Y.; Mao, J.; Liu, H.; Hu, W. B.; Du, X. W.; Ling, T.; Qiao, S. Z. *Nano Energy* **2018**, *43*, 103-109.

(52) Kou, T.; Smart, T.; Yao, B.; Chen, I.; Thota, D.; Ping, Y.; Li, Y. *Adv. Energy Mater.* **2018**, *8*, 1703538.

(53) Hao, S.; Cao, Q.; Yang, L.; Che, R. J. Alloys Compd. 2020, 827, 154163.

(54) Zhang, Q.; Ye, C.; Li, X. L.; Deng, Y. H.; Tao, B. X.; Xiao, W.; Li, L. J.; Li, N. B.; Luo, H. Q. *ACS Appl. Mater. Interfaces* **2018**, *10*, 27723-27733.

(55) Ju, Q.; Ma, R.; Pei, Y.; Guo, B.; Liu, Q.; Zhang, T.; Yang, M.; Wang, J. *Mater. Res. Bull.* **2020**, *125*, 110770.

(56) Ma, X.; Zhang, W.; Deng, Y.; Zhong, C.; Hu, W.; Han, X. *Nanoscale* **2018**, *10*, 4816-4824.

(57) Xiao, F.; Chen, Z.; Wu, H.; Wang, Y.; Cao, E.; Lu, X.; Wu, Y.; Ren, Z. Nanoscale

2019, *11*, 23027-23034.

(58) Pu, Z.; Amiinu, I. S.; Zhang, C.; Wang, M.; Kou, Z.; Mu, S. *Nanoscale* **2017**, *9*, 3555-3560.

(59) Liu, Z.; Liu, D.; Zhao, L.; Tian, J.; Yang, J.; Feng, L. J. Mater. Chem. A 2021, 9, 7750-7758.

(60) Song, N.; Hong, S.; Xiao, M.; Zuo, Y.; Jiang, E.; Li, C.; Dong, H. J. Colloid Interface Sci. 2021, 582, 535-542.

(61) Yang, L.; Guo, Z.; Huang, J.; Xi, Y.; Gao, R.; Su, G.; Wang, W.; Cao, L.; Dong, B. *Adv. Mater.* **2017**, *29*, 1704574.

(62) Xu, X.; Wang, T.; Zhao, C.; Huang, Z.; Zheng, M.; Jia, R.; Liu, Y. *Microporous Mesoporous Mater.* **2021**, *312*, 110760.

(63) Boppella, R.; Park, J.; Lee, H.; Jang, G.; Moon, J. Small Methods 2020, 4, 2000043.

(64) Ganesan, V.; Kim, J. Int. J. Hydrogen Energy 2020, 45, 13290-13299.

(65) Xu, S.; Du, J.; Li, J.; Sun, L.; Li, F. J. Mater. Chem. A 2020, 8, 16908-16912.

(66) Lim, S. C.; Chiang, C. L.; Peng, C. K.; Wu, W. B.; Lin, Y. C.; Lin, Y. R.; Chen, C. L.; Lin, Y. G. Chem. Eng. J. 2023, 452, 139715.

(67) Elayappan, V.; Shanmugam, R.; Chinnusamy, S.; Yoo, D. J.; Mayakrishnan, G.; Kim, K.; Noh, H. S.; Kim, M. K.; Lee, H. *Appl. Surf. Sci.* **2020**, *505*, 144642.

(68) Li, M.; Zhu, Y.; Wang, H.; Wang, C.; Pinna, N.; Lu, X. Advanced Energy Mater. **2019**, *9*, 1803185.

(69) Gu, L. F.; Chen, J. J.; Zhou, T.; Lu, X. F.; Li, G. R. *Nanoscale* 2020, *12*, 11201-11208.
(70) Zhang, S.; Li, Y.; Zhu, H.; Lu, S.; Ma, P.; Dong, W.; Duan, F.; Chen, M.; Du, M. *ACS Appl Mater Interfaces* 2020, *12*, 6250-6261.

(71) Hao, Q.; Li, S.; Liu, H.; Mao, J.; Li, Y.; Liu, C.; Zhang, J.; Tang, C. *Catal. Sci. Technol.* **2019**, *9*, 3099-3108.

(72) Yang, Y. F.; Shi, J. H.; Bi, H. H.; Huang, G. F.; Yao, D. L.; Huang, W. Q. J. Phys. D 2021, 55, 055502.

(73) Cartagena, S.; Calderón, J. A. Electrochim. Acta 2022, 407, 139884.

(74) Wang, P.; He, H.; Pu, Z.; Chen, L.; Zhang, C.; Wang, Z.; Mu, S. *Dalton Trans* **2019**, *48*, 13466-13471.

(75) Hei, J.; Xu, G.; Wei, B.; Zhang, L.; Ding, H.; Liu, D. Appl. Surf. Sci. 2021, 549, 149297.

(76) Diao, F.; Huang, W.; Ctistis, G.; Wackerbarth, H.; Yang, Y.; Si, P.; Zhang, J.; Xiao, X.; Engelbrekt, C. *ACS Appl. Mater. Interfaces* **2021**, *13*, 23702-23713.

(77) Li, D.; Xing, Y.; Yang, R.; Wen, T.; Jiang, D.; Shi, W.; Yuan, S. ACS Appl. Mater. Interfaces **2020**, *12*, 29253-29263.

(78) Li, J. G.; Xie, K.; Sun, H.; Li, Z.; Ao, X.; Chen, Z.; Ostrikov, K. K.; Wang, C.;

Zhang, W. ACS Appl. Mater. Interfaces 2019, 11, 36649-36657.

(79) Yuan, Q.; Yu, Y.; Gong, Y.; Bi, X. ACS Appl. Mater. Interfaces 2020, 12, 3592-3602.

(80) Zhang, Y.; Li, L.; Chen, J.; Ma, Y.; Yang, X. Ceram. Int. 2021, 47, 12843-12850.

(81) Cheng, Y.; Yin, Z.; Ma, W. M.; He, Z. X.; Yao, X.; Lv, W. Y. *Inorg. Chem.* **2022**, *61*, 3327-3336.

(82) Qazi, U. Y.; Javaid, R.; Zahid, M.; Tahir, N.; Afzal, A.; Lin, X. M. Int. J. Hydrog. Energy 2021, 46, 18936-18948.

(83) Wei, X.; Zhang, Y.; He, H.; Gao, D.; Hu, J.; Peng, H.; Peng, L.; Xiao, S.; Xiao, P. Chem. Commun. 2019, 55, 6515-6518.

(84) Samanta, R.; Mishra, R.; Manna, B. K.; Barman, S. ACS Appl. Nano Mater. 2022, 5, 17022-17032.

(85) Gong, T.; Zhang, J.; Liu, Y.; Hou, L.; Deng, J.; Yuan, C. Chem. Eng. J. 2023, 451, 139025.

(86) Zhong, Y.; Wang, S.; Zhang, L. New J. Chem. 2023, 47, 4430-4438.