
Supporting Information

Hybrid CuSn nanospheres functionalizing Cu/Sn co-doping hollow carbon nanofibers as anode materials for sodium-ion batteries

Xuwu Xiao,^a Wenli Yao,^{a,c*} Tingting Yan,^a Wenyao Zhang,^a Qian Zhang,^{a,c} Shengwen Zhong^a and Zhengquan Yan^{b,*}

^aJiangxi Key laboratory of Power Battery and Material, Faculty of Materials Metallurgy and
Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China
^bSchool of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, China
^cYichun Lithium New Energy Industry Research Institute, Jiangxi University of Science and
Technology, Ganzhou 341000, China

* E-mail address: wenliyao@126.com; yanzhq2008@163.com

Figure S1. (a,b) FE-SEM images of Sn-SnO_x@MCNF; (c,d) TEM and HRTEM image of Sn-SnO_x@MCNF.

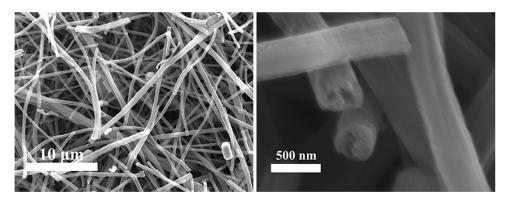


Figure S2. FE-SEM images of Cu@MCNF.

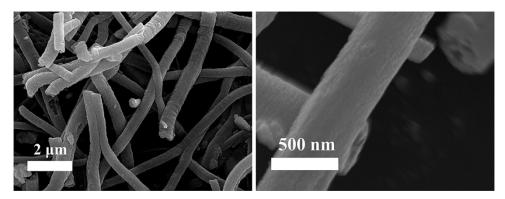


Figure S3. FE-SEM images of pure MCNF.

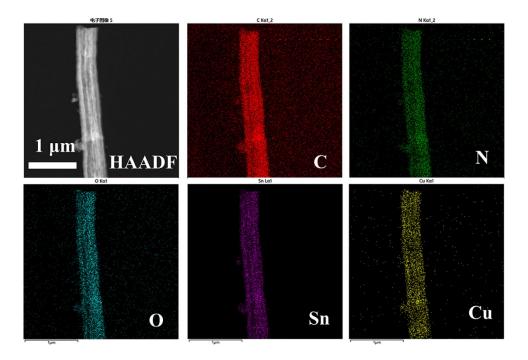
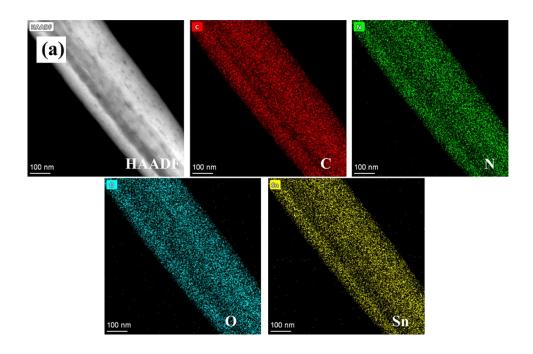
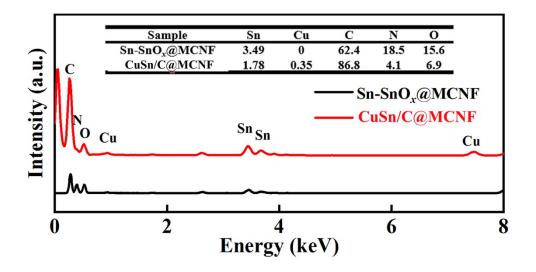




Figure S4. TEM-mapping images of CuSn/C@MCNF.

Figure S5. TEM-mapping images of Sn-SnO_x@MCNF.

Figure S6. EDS spectra and atomic concentrations of elements in CuSn/C@MCNF and Sn-SnO_x@MCNF obtained from TEM-mapping analysis.

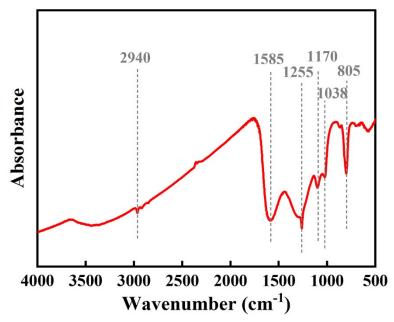
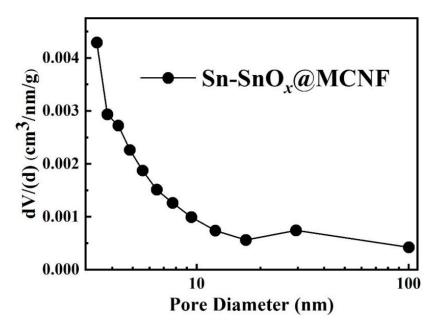



Figure S7. FTIR spectrum of CuSn/C@MCNF.

Figure S8. Pore size distribution of Sn-SnO_x@MCNF.

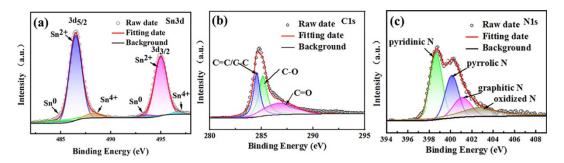
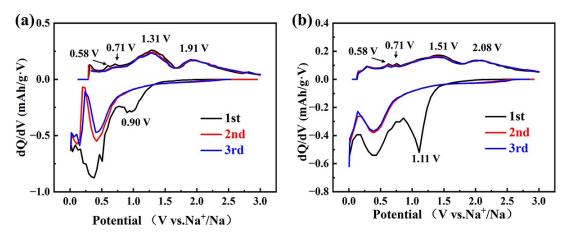
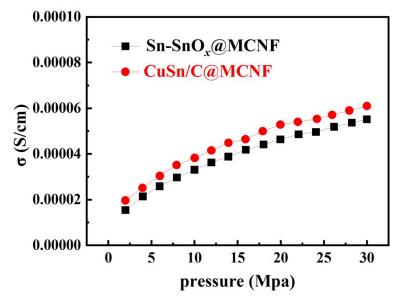




Figure S9. The high-resolution XPS spectrum of (a) Sn3d, (b) C1s, (c) N1s of Sn-SnO_x@MCNF.

Figure S10. The dQ/dV curves for the first three cycles of (a) Sn-SnO_x@MCNF and (b) CuSn/C@MCNF.

Figure S11. The electrical conductivity of Sn-SnO_x@MCNF and CuSn/C@MCNF at different pressures.

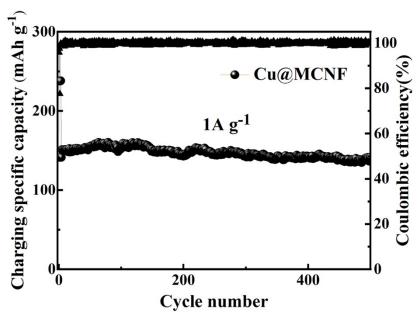


Figure S12. Discharge/charge curves of the Cu@MCNF electrode for 500 cycles.

Table S1. Atomic concentrations (at.%) of elements in Sn-SnO_x@MCNF and CuSn/C@MCNF obtained from the corresponding XPS analysis.

Sample	Sn/ _(at.%)	Cu/ _(at.%)	C/ _(at.%)	N/ _(at.%)	O/ _(at.%)
Sn-SnO _x @MCNF	3.49	0	62.4	6.92	9.25
CuSn/C@MCNF	1.35	0.61	79.17	9.04	9.83

Table S2. The EIS fitting parameters of $Sn-SnO_x@MCNF$ and CuSn/C@MCNF electrodes after three cycles at a current density of 0.1 A g^{-1} .

Sample	$R_{ct}(\Omega)$	$Rs(\Omega)$
Sn-SnO _x @MCNF	169.9	9.679
CuSn/C@MCNF	82.24	5.696