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1. Derivation formula of second-order perturbation theory.

In order to better explain the MAE of the CrSBr monolayer, we will start with the 

perturbation theory. Assuming that the system Hamiltonian can be divided into two 

parts, one part is which without perturbation, its energy eigenvalue is , and its �̂�(0) 𝐸(0)
𝑛

eigenwave function is  ;the other part is the perturbation part with , and  is 𝜓(0) �̂�' �̂�'

relative  is much smaller. Then the Schrödinger equation the of the system with �̂�(0)

total  can be written as,�̂�

,  (1)�̂� =  �̂�(0) +  �̂�' �̂�(0)𝜓(0) = 𝐸(0)
𝑛 𝜓(0)

(2)�̂�𝜓𝑛 =  𝐸𝑛𝜓𝑛

To show perturbation term is so small,  can be written as ,  is a small real �̂�' �̂�' = 𝜆�̂�(1) 𝜆

parameter. Since both  and  are related to the perturbation and are functions of the 𝐸𝑛 𝜓𝑛

degree of perturbation , expand them to the power function of  as:𝜆 𝜆

 (3)𝐸𝑛 = 𝐸(0)
𝑛 + 𝜆𝐸(1)

𝑛 + 𝜆2𝐸(2)
𝑛 + …

(4)𝜓𝑛 = 𝜓(0)
𝑛 + 𝜆𝜓(1)

𝑛 + 𝜆2𝜓(2)
𝑛 + …

 and are the first-level correction of energy and wave function, respectively. 𝜆𝐸(1)
𝑛 𝜆𝜓(1)

𝑛

And  and  are the second-level correction. Therefore, the following 𝜆2𝐸(2)
𝑛 𝜆2𝜓(2)

𝑛

formulas can be obtained,

(5)(�̂�(0) ‒ 𝐸(0)
𝑛 )𝜓(0)

𝑛 = 0

(6)(�̂�(0) ‒ 𝐸(0)
𝑛 )𝜓(1)

𝑛 =‒ (�̂�(1) ‒ 𝐸(1)
𝑛 )𝜓(0)

𝑛

(7)(�̂�(0) ‒ 𝐸(0)
𝑛 )𝜓(2)

𝑛 =‒ (�̂�(1) ‒ 𝐸(1)
𝑛 )𝜓(1)

𝑛 + 𝐸(2)
𝑛 𝜓(0)

𝑛

To get , multiply left simultaneously on the both sides of equation (6) and 𝐸(1)
𝑛 𝜓 ∗ (0)

𝑛

integrate over the whole space,

(8)∫𝜓 ∗ (0)
𝑛 (�̂�(0) ‒ 𝐸(0)

𝑛 )𝜓(1)
𝑛 𝑑𝜏 = 𝐸(1)

𝑛 ∫𝜓 ∗ (0)
𝑛 𝜓(0)

𝑛 𝑑𝜏 ‒ ∫𝜓 ∗ (0)
𝑛 �̂�(1)𝜓(0)

𝑛 𝑑𝜏



(9)
𝐸(1)

𝑛 = ∫𝜓 ∗ (0)
𝑛 �̂�(1)𝜓(0)

𝑛 𝑑𝜏 = 𝐻(1)
𝑛𝑛

Given , the first-order correction term  of the wave function can be obtained 𝐸(1)
𝑛 𝜓(1)

𝑛

from equation (6). Expand the eigenfunction system of  according to  as, 𝜓(1)
𝑛 �̂�(0)

 into equation (6) and left multiplied by  on both sides 
𝜓(1)

𝑛 = ∑
𝑙

𝑎(1)
𝑙 𝜓(0)

𝑙   (𝑙 ≠ 𝑛)
𝜓(0)

𝑚

of the equation at the same time to integrate in the whole space, we get,

∫𝜓 ∗ (0)
𝑚 (∑

𝑙

𝐸(0)
𝑙 𝑎(1)

𝑙 𝜓(0)
𝑙 ‒ 𝐸(0)

𝑛 ∑
𝑙

𝑎(1)
𝑙 𝜓(0)

𝑙 )𝑑𝜏 = ∫𝜓 ∗ (0)
𝑛 (𝐸(1)

𝑛 𝜓(0)
𝑛 ‒ �̂�(1)𝜓(0)

𝑛 )𝑑𝜏

(10)

(11)
∑
𝑙 ≠ 𝑛

𝐸(0)
𝑙 𝑎(1)

𝑙 𝛿𝑚𝑙 ‒ 𝐸(0)
𝑛 ∑

𝑙 ≠ 𝑛

𝑎(1)
𝑙 𝛿𝑚𝑙 = ‒ ∫𝜓 ∗ (0)

𝑚 �̂�(1)𝜓(0)
𝑛 𝑑𝜏 = 𝐻(1)

𝑚𝑛

When , , so 𝑚 = 𝑙 (𝐸(0)
𝑛 ‒ 𝐸(0)

𝑚 )𝑎(1)
𝑚 = 𝐻(1)

𝑚𝑛

(12) 
𝑎(1)

𝑚 =
𝐻(1)

𝑚𝑛

𝐸(0)
𝑛 ‒ 𝐸(0)

𝑚

(13)
𝜓(1)

𝑛 = ∑
𝑚 ≠ 𝑛

𝐻(1)
𝑚𝑛

𝐸(0)
𝑛 ‒ 𝐸(0)

𝑚

𝜓(0)
𝑚

Now find the second-order correction of energy . Put  𝐸(2)
𝑛

𝜓(1)
𝑛 = ∑

𝑙

𝑎(1)
𝑙 𝜓(0)

𝑙   (𝑙 ≠ 𝑛)

into equation (7), and use to multiply both sides of the equation to integrate the 𝜓 ∗ (0)
𝑚

full space, 

(14)
∫𝜓 ∗ (0)

𝑚 (�̂�(0) ‒ 𝐸(0)
𝑛 )𝜓(2)

𝑛 𝑑𝜏 =‒ ∑
𝑙 ≠ 𝑛

𝑎(1)
𝑙 𝐻(1)

𝑛𝑙 + 𝐸(1)
𝑛 ∑

𝑙 ≠ 𝑛

𝑎(1)
𝑙 𝛿𝑛𝑙 + 𝐸(2)

𝑛

(15)
𝐸(2)

𝑛 = ∑
𝑙 ≠ 𝑛

𝑎(1)
𝑙 𝐻(1)

𝑛𝑙 = ∑
𝑚 ≠ 𝑛

𝐻(1)
𝑚𝑛𝐻(1)

𝑛𝑚

𝐸(0)
𝑛 ‒ 𝐸(0)

𝑚

= ∑
𝑚 ≠ 𝑛

|𝐻(1)
𝑛𝑚|2

𝐸(0)
𝑛 ‒ 𝐸(0)

𝑚

  (𝑙 = 𝑚)

The energy perturbed by the system is,

(16)
∆𝐸 = 𝐻(1)

𝑛𝑛 + ∑
𝑚 ≠ 𝑛

|𝐻(1)
𝑛𝑚|2

𝐸(0)
𝑛 ‒ 𝐸(0)

𝑚

+ …

For 3d transition metals, the energy level splitting caused by spin-orbit coupling is 



much smaller than the energy level splitting caused by electron correlation interaction, 

so it is reasonable to regard spin-orbit coupling as perturbation. Therefore, according 

to the perturbation theory, the Hamiltonian including SOC can be written as,

(17)
�̂� =  �̂�(0) +  𝜆⟨𝑛│�̂� ⋅ �̂�│𝑛⟩ + 𝜆2 ∑

𝑚 ≠ 𝑛

|⟨𝑛│�̂� ⋅ �̂�│𝑚⟩|2

𝐸(0)
𝑛 ‒ 𝐸(0)

𝑚

Then the corresponding energy is,

(18)
𝐸𝑆𝑂𝐶 = 𝜆⟨𝑛│�̂� ⋅ �̂�│𝑛⟩ + 𝜆2 ∑

𝑚 ≠ 𝑛

|⟨𝑛│�̂� ⋅ �̂�│𝑚⟩|2

𝐸(0)
𝑛 ‒ 𝐸(0)

𝑚

where  and  respectively represent the Hamiltonian quantum state and  and �|𝑛⟩ �|𝑚⟩ 𝐸(0)
𝑛

 are the intrinsic energy values of these two states. If spin states  (both spin-up 𝐸(0)
𝑚 𝜎

states  and spin-down states ) is considered in the wave function, then,�|↑⟩ �|↓⟩

𝐸𝑆𝑂𝐶

= 𝜆(⟨↑, 𝑛│�̂� ⋅ �̂�│↑,𝑛⟩ + ⟨↑, 𝑛│�̂� ⋅ �̂�│↓,𝑛⟩ + ⟨↓, 𝑛│�̂� ⋅ �̂�│↑,𝑛⟩ + ⟨↓, 𝑛│�̂� ⋅ �̂�│↓,𝑛⟩) +

𝜆2( ∑
𝑚 ≠ 𝑛

|⟨↑,𝑛│�̂� ⋅ �̂�│↑,𝑚⟩|2

𝐸(0)
𝑛 ‒ 𝐸(0)

𝑚

+ ∑
𝑚 ≠ 𝑛

|⟨↑,𝑛│�̂� ⋅ �̂�│↓,𝑚⟩|2

𝐸(0)
𝑛 ‒ 𝐸(0)

𝑚

+ ∑
𝑚 ≠ 𝑛

|⟨↓,𝑛│�̂� ⋅ �̂�│↑,𝑚⟩|2

𝐸(0)
𝑛 ‒ 𝐸(0)

𝑚

+ ∑
𝑚 ≠ 𝑛

|⟨↓,𝑛│�̂� ⋅ �̂�│↓,𝑚⟩|2

𝐸(0)
𝑛 ‒ 𝐸(0)

𝑚

)

(19)

Now discuss the representation of Hamiltonian quantum states. The Hamiltonian 

quantum state  can be written as a wave function such as,�|𝑛⟩

(20)Ψ = 𝜓𝑛𝑙𝑚(�⃑�,𝜃,𝜑) = 𝑅𝑛𝑙(�⃑�)𝑌𝑙𝑚(𝜃,𝜑)

Where  is called principal quantum number;  is called the 𝑛 = 1, 2, 3,… 𝑙 = 0, 1, 2, …

angular quantum number which characterize the magnitude of angular momentum; 

 is called magnetic quantum number. 𝑚 = 𝑙,  𝑙 ‒ 1,  𝑙 ‒ 2,  ... ,  ‒ 𝑙 + 2,  ‒ 𝑙 + 1,  ‒ 𝑙

 is a radial function, related only to the position vector  whose expression is,𝑅𝑛𝑙(�⃑�) �⃑�

 (21)
𝑅𝑛𝑙(�⃑�) = 𝑁𝑛𝑙𝑒

‒
𝑍

𝑛𝑎0
𝑟

( 2𝑍
𝑛𝑎0

𝑟)𝑙𝐹( ‒ 𝑛 + 𝑙 + 1, 2𝑙 + 2, 
2𝑍
𝑛𝑎0

𝑟)



𝑁𝑛𝑙 =
2

(2𝑙 + 1)!
(𝑛 + 𝑙)!𝑍3

(𝑛 ‒ 𝑙 ‒ 1)!𝑎3
0

Where  and Z is the atomic number. The values of several radial functions 
𝑎0 =

ℏ2

𝑚𝑒𝑒2
𝑠

are listed below:

, (22)
𝑅1,0(𝑟) = ( 𝑍

𝑎0
)

3
22𝑒

( ‒
𝑍𝑟
𝑎0

)

,
𝑅2,0(𝑟) = ( 𝑍

2𝑎0
)

3
2(2 ‒

𝑍𝑟
𝑎0

)𝑒
( ‒

𝑍𝑟
2𝑎0

)

,
𝑅2,1(𝑟) = ( 𝑍

2𝑎0
)

3
2 𝑍𝑟
𝑎0 3

𝑒
( ‒

𝑍𝑟
2𝑎0

)

,
𝑅3,0(𝑟) = ( 𝑍

3𝑎0
)

3
2[2 ‒

4𝑍𝑟
3𝑎0

+
4

27
(
𝑍𝑟
𝑎0

)2])𝑒
( ‒

𝑍𝑟
3𝑎0

)

,
𝑅3,1(𝑟) = (2𝑍

𝑎0
)

3
2( 2

27 3
‒

𝑍𝑟
81𝑎0 3)𝑍𝑟

𝑎0
𝑒

( ‒
𝑍𝑟

3𝑎0
)

,
𝑅3,2(𝑟) = (2𝑍

𝑎0
)

3
2 1
81 15(𝑍𝑟

𝑎0
)2𝑒

( ‒
𝑍𝑟

3𝑎0
)

…

The spherical harmonic function  is a single-valued, continuous, and bounded 𝑌𝑙𝑚(𝜃,𝜑)

complex function containing  ( ) and  ( ). It can be expressed by 𝜃 𝜃 ∈ [0, 𝜋] 𝜑 𝜑 ∈ [0, 2𝜋]

the following formula. 

𝑌𝑙𝑚(𝜃,𝜑) = ( ‒ 1)𝑚𝑁𝑙𝑚𝑃𝑚
𝑙 (cos 𝜃)𝑒𝑖𝑚𝜑

Where  is associated Legendre polynomial.  is the 𝑃𝑚
𝑙 (cos 𝜃) 𝑁𝑙𝑚 =

(𝑙 ‒ 𝑚)!(2𝑙 + 1)
(𝑙 + 𝑚)!4𝜋

normalization factor. Next, list a few spherical harmonic functions



, (23)
𝑌00(𝜃,𝜑) =

1
2 𝜋

,
𝑌1 + 1(𝜃,𝜑) =‒

1
2

3
2𝜋

sin 𝜃𝑒𝑖𝜑

,
𝑌10(𝜃,𝜑) =

1
2

3
𝜋

cos 𝜃

,
𝑌1 ‒ 1(𝜃,𝜑) =

1
2

3
2𝜋

sin 𝜃𝑒 ‒ 𝑖𝜑

,0
𝑌2 + 2(𝜃,𝜑) =

1
4

3 ⋅ 5
2𝜋

sin2 𝜃𝑒𝑖2𝜑 =
1
8

3 ⋅ 5
2𝜋

(1 ‒ cos 2𝜃)𝑒𝑖2𝜑

,
𝑌2 + 1(𝜃,𝜑) =‒

1
2

3 ⋅ 5
2𝜋

cos θ sin 𝜃𝑒𝑖𝜑 =‒
1
4

3 ⋅ 5
2𝜋

sin 2θ 𝑒𝑖𝜑

,
𝑌20(𝜃,𝜑) =

1
4

5
𝜋

(3cos2 𝜃 ‒ 1) =
1
8

5
𝜋

(1 + 3cos 2𝜃)

,
𝑌2 ‒ 1(𝜃,𝜑) =

1
2

3 ⋅ 5
2𝜋

cos θ sin 𝜃𝑒 ‒ 𝑖𝜑 =
1
4

3 ⋅ 5
2𝜋

sin 2θ 𝑒 ‒ 𝑖𝜑

,
𝑌2 ‒ 2(𝜃,𝜑) =

1
4

3 ⋅ 5
2𝜋

sin2 𝜃𝑒 ‒ 𝑖2𝜑 =
1
8

3 ⋅ 5
2𝜋

(1 ‒ cos 2𝜃)𝑒 ‒ 𝑖2𝜑

,
𝑌3 + 3(𝜃,𝜑) =‒

1
8

5 ⋅ 7
𝜋

sin3 𝜃𝑒𝑖3𝜑 =‒
1

32
5 ⋅ 7

𝜋
(3sin 𝜃 ‒ sin 3𝜃)𝑒𝑖3𝜑

,
𝑌3 + 2(𝜃,𝜑) =

1
4

3 ⋅ 5 ⋅ 7
2𝜋

cos θsin2 𝜃𝑒𝑖2𝜑 =
1

16
3 ⋅ 5 ⋅ 7

2𝜋
(cos θ ‒ cos 3𝜃)𝑒𝑖2𝜑

,
𝑌3 + 1(𝜃,𝜑) = ‒

1
8

3 ⋅ 7
𝜋

(5cos2 𝜃 ‒ 1)sin 𝜃𝑒𝑖𝜑 =‒
1

32
3 ⋅ 7

𝜋
(sin 𝜃 + 5sin 3𝜃)𝑒𝑖𝜑

,
𝑌30(𝜃,𝜑) =

1
4

7
𝜋

(5cos2 𝜃 ‒ 3)cos 𝜃 =
1

16
7
𝜋

(3cos θ + 5cos 3𝜃)

,
𝑌3 ‒ 1(𝜃,𝜑) =

1
8

3 ⋅ 7
𝜋

(5cos2 𝜃 ‒ 1)sin 𝜃𝑒 ‒ 𝑖𝜑 =‒
1

32
3 ⋅ 7

𝜋
(sin 𝜃 + 5sin 3𝜃)𝑒 ‒ 𝑖𝜑

,
𝑌3 ‒ 2(𝜃,𝜑) =

1
4

3 ⋅ 5 ⋅ 7
2𝜋

cos θsin2 𝜃𝑒 ‒ 𝑖2𝜑 =
1

16
3 ⋅ 5 ⋅ 7

2𝜋
(cos θ ‒ cos 3𝜃)𝑒 ‒ 𝑖2𝜑



,
𝑌3 ‒ 3(𝜃,𝜑) =

1
8

5 ⋅ 7
𝜋

sin3 𝜃𝑒 ‒ 𝑖3𝜑 =
1

32
5 ⋅ 7

𝜋
(3sin 𝜃 ‒ sin 3𝜃)𝑒 ‒ 𝑖3𝜑

…

Thus, the total wave function and the orbits it represents are therefore listed Table S1.

Table S1. The principal quantum number, angular quantum number, magnetic quantum number, 

total wave function, and corresponding orbit.

𝑛 𝑙 𝑚 Ψ = 𝜓𝑛𝑙𝑚(�⃑�,𝜃,𝜑) orbit

1 0 0 𝜓100(�⃑�,𝜃,𝜑) = 𝑅10(�⃑�)𝑌00(𝜃,𝜑) 1s

0 0 𝜓200(�⃑�,𝜃,𝜑) = 𝑅20(�⃑�)𝑌00(𝜃,𝜑) 2s

-1 𝜓21 ‒ 1(�⃑�,𝜃,𝜑) = 𝑅21(�⃑�)𝑌1 ‒ 1(𝜃,𝜑) 2py

0 𝜓210(�⃑�,𝜃,𝜑) = 𝑅21(�⃑�)𝑌10(𝜃,𝜑) 2pz

2
1

1 𝜓211(�⃑�,𝜃,𝜑) = 𝑅21(�⃑�)𝑌11(𝜃,𝜑) 2px

0 0 𝜓300(�⃑�,𝜃,𝜑) = 𝑅30(�⃑�)𝑌00(𝜃,𝜑) 3s

-1 𝜓31 ‒ 1(�⃑�,𝜃,𝜑) = 𝑅31(�⃑�)𝑌1 ‒ 1(𝜃,𝜑) 3py

0 𝜓310(�⃑�,𝜃,𝜑) = 𝑅31(�⃑�)𝑌10(𝜃,𝜑) 3pz1

1 𝜓311(�⃑�,𝜃,𝜑) = 𝑅31(�⃑�)𝑌11(𝜃,𝜑) 3px

-2 𝜓32 ‒ 2(�⃑�,𝜃,𝜑) = 𝑅32(�⃑�)𝑌2 ‒ 2(𝜃,𝜑) 3dxy

-1 𝜓32 ‒ 1(�⃑�,𝜃,𝜑) = 𝑅32(�⃑�)𝑌2 ‒ 1(𝜃,𝜑) 3dyz

0 𝜓320(�⃑�,𝜃,𝜑) = 𝑅32(�⃑�)𝑌20(𝜃,𝜑) 3dz
2

1 𝜓321(�⃑�,𝜃,𝜑) = 𝑅32(�⃑�)𝑌21(𝜃,𝜑) 3dxz

3

2

2 𝜓322(�⃑�,𝜃,𝜑) = 𝑅32(�⃑�)𝑌22(𝜃,𝜑) 3dx
2
-y

2

Then, the part of  can be written as the following form in spherical coordinates.�̂� ⋅ �̂�



, (24)
̂𝑙𝑥 = 𝑖ℏ(sin 𝜑

∂
∂𝜃

+
cos 𝜃
sin 𝜃

cos 𝜑
∂

∂𝜑
)

,
̂𝑙𝑦 =‒ 𝑖ℏ(cos 𝜑

∂
∂𝜃

‒
cos 𝜃
sin 𝜃

sin 𝜑
∂

∂𝜑
)

,
̂𝑙𝑧 =‒ 𝑖ℏ

∂
∂𝜑

̂𝑙2 =‒ ℏ2[ 1
sin 𝜃

∂
∂𝜃

(sin 𝜃
∂

∂𝜃
+

1

sin2 𝜃

∂2

∂𝜑2
)]

Now, taking equations (20 - 24) into the first term of equation (19) and get the Table 

S2, noting that all diagonal elements in Table 2 are zero. Therefore, the effect of the 

first order perturbation term on the SOC is zero, so we can just consider the second-

order perturbation term when calculating the SOC (shown in Table S3). 

Table S2. Matrix elements  and  of the spin-orbit coupling ⟨𝜎𝑖,𝑝𝑖│�̂�𝑛 ⋅ �̂�𝑛│𝜎𝑗,𝑝𝑗⟩ ⟨𝜎𝑖,𝑑𝑖│�̂�𝑛 ⋅ �̂�𝑛│𝜎𝑗,𝑑𝑗⟩

operator with respect to spin state in direction , in units of .�⃑� = (𝑥,𝑦,𝑧) ℏ

�|↑, 𝑝𝑦⟩ �|↑, 𝑝𝑧⟩ �|↑, 𝑝𝑥⟩ �|↓, 𝑝𝑦⟩ �|↓, 𝑝𝑧⟩ �|↓, 𝑝𝑥⟩

�|↑, 𝑝𝑦⟩ 0 0 iz 0 -ix 0
�|↑, 𝑝𝑧⟩ 0 0 0 ix 0 -y
�|↑, 𝑝𝑥⟩ -iz 0 0 0 y 0
�|↓, 𝑝𝑦⟩ 0 -ix 0 0 0 -iz
�|↓, 𝑝𝑧⟩ ix 0 y 0 0 0
�|↓, 𝑝𝑥⟩ 0 -y 0 iz 0 0

�|↑, 𝑑𝑥𝑦⟩ �|↑, 𝑑𝑦𝑧⟩ �|↑, 𝑑
𝑧2⟩ �|↑, 𝑑𝑥𝑧⟩ �|↑, 𝑑

𝑥2 ‒ 𝑦2⟩ �|↓, 𝑑𝑥𝑦⟩ �|↓, 𝑑𝑦𝑧⟩ �|↓, 𝑑
𝑧2⟩ �|↓, 𝑑𝑥𝑧⟩ �|↓, 𝑑

𝑥2 ‒ 𝑦2⟩
�|↑, 𝑑𝑥𝑦⟩ 0 0 0 0 2iz 0 y 0 -ix 0

�|↑, 𝑑𝑦𝑧⟩ 0 0 0 iz 0 -y 0 - 3𝑖𝑥 0 -ix

�|↑, 𝑑
𝑧2⟩ 0 0 0 0 0 0 3𝑖𝑥 0 - 3𝑦 0

�|↑, 𝑑𝑥𝑧⟩ 0 -iz 0 0 0 ix 0 3𝑦 0 -y

�|↑, 𝑑
𝑥2 ‒ 𝑦2⟩ -2iz 0 0 0 0 0 ix 0 y 0

�|↓, 𝑑𝑥𝑦⟩ 0 -y 0 -ix 0 0 0 0 0 -2iz

�|↓, 𝑑𝑦𝑧⟩ y 0 - 3𝑖𝑥 0 -ix 0 0 0 -iz 0

�|↓, 𝑑
𝑧2⟩ 0 3𝑖𝑥 0 3𝑦 0 0 0 0 0 0

�|↓, 𝑑𝑥𝑧⟩ ix 0 - 3𝑦 0 y 0 iz 0 0 0



�|↓, 𝑑
𝑥2 ‒ 𝑦2⟩ 0 ix 0 -y 0 2iz 0 0 0 0

Table S3. Matrix elements  and  of the |⟨𝜎𝑖,𝑝𝑖│�̂�𝑛 ⋅ �̂�𝑛│𝜎𝑗,𝑝𝑗⟩|2 |⟨𝜎𝑖,𝑑𝑖│�̂�𝑛 ⋅ �̂�𝑛│𝜎𝑗,𝑑𝑗⟩|2

spin-orbit coupling operator with respect to spin state in direction , in units �⃑� = (𝑥,𝑦,𝑧)

of .ℏ

�|↑, 𝑝𝑦⟩ �|↑, 𝑝𝑧⟩ �|↑, 𝑝𝑥⟩ �|↓, 𝑝𝑦⟩ �|↓, 𝑝𝑧⟩ �|↓, 𝑝𝑥⟩

�|↑, 𝑝𝑦⟩ 0 0 z2 0 x2 0
�|↑, 𝑝𝑧⟩ 0 0 0 x2 0 y2

�|↑, 𝑝𝑥⟩ z2 0 0 0 y2 0
�|↓, 𝑝𝑦⟩ 0 x2 0 0 0 z2

�|↓, 𝑝𝑧⟩ x2 0 y2 0 0 0
�|↓, 𝑝𝑥⟩ 0 y2 0 z2 0 0

�|↑, 𝑑𝑥𝑦⟩ �|↑, 𝑑𝑦𝑧⟩ �|↑, 𝑑
𝑧2⟩ �|↑, 𝑑𝑥𝑧⟩ �|↑, 𝑑

𝑥2 ‒ 𝑦2⟩ �|↓, 𝑑𝑥𝑦⟩ �|↓, 𝑑𝑦𝑧⟩ �|↓, 𝑑
𝑧2⟩ �|↓, 𝑑𝑥𝑧⟩ �|↓, 𝑑

𝑥2 ‒ 𝑦2⟩
�|↑, 𝑑𝑥𝑦⟩ 0 0 0 0 4z2 0 y2 0 x2 0
�|↑, 𝑑𝑦𝑧⟩ 0 0 0 z2 0 y2 0 3x2 0 x2

�|↑, 𝑑
𝑧2⟩ 0 0 0 0 0 0 3x2 0 3y2 0

�|↑, 𝑑𝑥𝑧⟩ 0 z2 0 0 0 x2 0 3y2 0 y2

�|↑, 𝑑
𝑥2 ‒ 𝑦2⟩ 4z2 0 0 0 0 0 x2 0 y2 0

�|↓, 𝑑𝑥𝑦⟩ 0 y2 0 x2 0 0 0 0 0 4z2

�|↓, 𝑑𝑦𝑧⟩ y2 0 3x2 0 x2 0 0 0 z2 0
�|↓, 𝑑

𝑧2⟩ 0 3x2 0 3y2 0 0 0 0 0 0
�|↓, 𝑑𝑥𝑧⟩ x2 0 3y2 0 y2 0 z2 0 0 0

�|↓, 𝑑
𝑥2 ‒ 𝑦2⟩ 0 x2 0 y2 0 4z2 0 0 0 0

Table 4. The following three tables show the d-orbit coupling matrices in the x-, y- and 



z- directions respectively.

�|↑, 𝑑𝑥𝑦⟩ �|↑, 𝑑𝑦𝑧⟩ �|↑, 𝑑
𝑧2⟩ �|↑, 𝑑𝑥𝑧⟩ �|↑, 𝑑

𝑥2 ‒ 𝑦2⟩ �|↓, 𝑑𝑥𝑦⟩ �|↓, 𝑑𝑦𝑧⟩ �|↓, 𝑑
𝑧2⟩ �|↓, 𝑑𝑥𝑧⟩ �|↓, 𝑑

𝑥2 ‒ 𝑦2⟩
�|↑, 𝑑𝑥𝑦⟩ 0 0 0 0 0 0 0 0 1 0
�|↑, 𝑑𝑦𝑧⟩ 0 0 0 0 0 0 0 3 0 1
�|↑, 𝑑

𝑧2⟩ 0 0 0 0 0 0 3 0 0 0
�|↑, 𝑑𝑥𝑧⟩ 0 0 0 0 0 1 0 0 0 0

�|↑, 𝑑
𝑥2 ‒ 𝑦2⟩ 0 0 0 0 0 0 1 0 0 0

�|↓, 𝑑𝑥𝑦⟩ 0 0 0 1 0 0 0 0 0 0
�|↓, 𝑑𝑦𝑧⟩ 0 0 3 0 1 0 0 0 0 0
�|↓, 𝑑

𝑧2⟩ 0 3 0 0 0 0 0 0 0 0
�|↓, 𝑑𝑥𝑧⟩ 1 0 0 0 0 0 0 0 0 0

�|↓, 𝑑
𝑥2 ‒ 𝑦2⟩ 0 1 0 0 0 0 0 0 0 0

�|↑, 𝑑𝑥𝑦⟩ �|↑, 𝑑𝑦𝑧⟩ �|↑, 𝑑
𝑧2⟩ �|↑, 𝑑𝑥𝑧⟩ �|↑, 𝑑

𝑥2 ‒ 𝑦2⟩ �|↓, 𝑑𝑥𝑦⟩ �|↓, 𝑑𝑦𝑧⟩ �|↓, 𝑑
𝑧2⟩ �|↓, 𝑑𝑥𝑧⟩ �|↓, 𝑑

𝑥2 ‒ 𝑦2⟩
�|↑, 𝑑𝑥𝑦⟩ 0 0 0 0 0 0 1 0 0 0
�|↑, 𝑑𝑦𝑧⟩ 0 0 0 0 0 1 0 0 0 0
�|↑, 𝑑

𝑧2⟩ 0 0 0 0 0 0 0 0 3 0
�|↑, 𝑑𝑥𝑧⟩ 0 0 0 0 0 0 0 3 0 1

�|↑, 𝑑
𝑥2 ‒ 𝑦2⟩ 0 0 0 0 0 0 0 0 1 0

�|↓, 𝑑𝑥𝑦⟩ 0 1 0 0 0 0 0 0 0 0
�|↓, 𝑑𝑦𝑧⟩ 1 0 0 0 0 0 0 0 0 0
�|↓, 𝑑

𝑧2⟩ 0 0 0 3 0 0 0 0 0 0
�|↓, 𝑑𝑥𝑧⟩ 0 0 3 0 0 0 0 0 0 0

�|↓, 𝑑
𝑥2 ‒ 𝑦2⟩ 0 0 0 1 0 0 0 0 0 0

�|↑, 𝑑𝑥𝑦⟩ �|↑, 𝑑𝑦𝑧⟩ �|↑, 𝑑
𝑧2⟩ �|↑, 𝑑𝑥𝑧⟩ �|↑, 𝑑

𝑥2 ‒ 𝑦2⟩ �|↓, 𝑑𝑥𝑦⟩ �|↓, 𝑑𝑦𝑧⟩ �|↓, 𝑑
𝑧2⟩ �|↓, 𝑑𝑥𝑧⟩ �|↓, 𝑑

𝑥2 ‒ 𝑦2⟩
�|↑, 𝑑𝑥𝑦⟩ 0 0 0 0 4 0 0 0 0 0
�|↑, 𝑑𝑦𝑧⟩ 0 0 0 1 0 0 0 0 0 0
�|↑, 𝑑

𝑧2⟩ 0 0 0 0 0 0 0 0 0 0
�|↑, 𝑑𝑥𝑧⟩ 0 1 0 0 0 0 0 0 0 0

�|↑, 𝑑
𝑥2 ‒ 𝑦2⟩ 4 0 0 0 0 0 0 0 0 0

�|↓, 𝑑𝑥𝑦⟩ 0 0 0 0 0 0 0 0 0 4
�|↓, 𝑑𝑦𝑧⟩ 0 0 0 0 0 0 0 0 1 0
�|↓, 𝑑

𝑧2⟩ 0 0 0 0 0 0 0 0 0 0
�|↓, 𝑑𝑥𝑧⟩ 0 0 0 0 0 0 1 0 0 0

�|↓, 𝑑
𝑥2 ‒ 𝑦2⟩ 0 0 0 0 0 4 0 0 0 0

2. One FM state and Four AFM states of a  supercell CrSBr 2 × 2



monolayer.

Figure S1 The  supercell of CrSBr monolayer with one FM (a) and four AFM (b - e). Red and 2 × 2

blue respectively represent different spin directions.

3. Density of states (DOS) for CrSBr monolayer 

Figure S2 The DOS and PDOS for CrSBr monolayer under no strain.

4. Change of bond angle, the energy difference, and magnetic moment 

under biaxial and uniaxial strains.



Figure S3 Change of bond angle (a), the energy difference (E) between ferromagnetic and 
different antiferromagnetic states (b), and magnetic moment (c) with different strains, respectively.

To study the effect of strain on the lattice changes of CrSBr monolayers in detail, 

the change of bond angle θ1(Cr-S1-Cr), θ2(Cr-Br-Cr), θ3(Cr-S3-Cr) as shown in Figure 

1a with different strains was shown in Figure S3a. The result shows that the bond angles 

of CrSBr monolayer change slightly with strains. Figure S3b shows the energy 

difference between ferromagnetic and different antiferromagnetic states, and indicates 

that the ferromagnetic ground state of CrSBr monolayer does not change under different 

strains. Besides, the total magnetic moment of CrSBr monolayer also changes little 

under different strains (Figure S3c).



5. The band gaps for CrSBr monolayer under different strains.

Figure S4 The band gaps of CrSBr monolayer under uniaxial strains along x direction.

Figure S5 The band gaps of CrSBr monolayer under uniaxial strains along y direction.

Figure S6 The band gaps of CrSBr monolayer under biaxial strains.



6. Magnetic anisotropy energy in whole space as well as in the three planes 

under different strains.

Figure S7 (a) and (b) SOC-MAE of CrSBr monolayer in the whole space and the xy, yz, xz planes. 
(c) and (d)Shape-MAE of CrSBr monolayer in the whole space with no strain.



Figure S8 The variation of SOC-MAE (a) and total-MAE (b) for CrSBr monolayer in the whole 
space under biaxial xy strains (-5% ~ 5%).



 Figure S9 The variation of SOC-MAE (a) and total-MAE (b) for CrSBr monolayer in the 
whole space under uniaxial y strain (-5% ~ 5%).



7. The contribution to MAE from the SOC interaction between different d orbital 

channels for Cr atoms under different strains

 
Figure S10 The contributions of p orbitals and d orbitals of Cr, S, and Br atom to SOC-MAE along 

[100] direction (a) and [010] direction (b) for CrSBr monolayer under different strains. The energy 

is the reference along [001] direction. 



Figure S11 The contribution to MAE from the SOC interaction between different d orbital channels 

along [100] (a) and [010] (b) directions for Cr atoms under different biaxial xy strains. The energy 

is the reference along [001] direction.



Figure S12 The contribution to MAE from the SOC interaction between different p orbital channels 

along [100] (a) and [010] (b) directions for Br atoms under different biaxial xy strains. The energy 

is the reference along [001] direction.



Figure S13 The contribution to MAE from the SOC interaction between different p orbital channels 

along [100] (a) and [010] (b) directions for Br atoms under different uniaxial x strains. The energy 

is the reference along [001] direction.



Figure S14 The contribution to MAE from the SOC interaction between different d orbital channels 

along [100] (a) and [010] (b) directions for Cr atoms under different uniaxial y strains. The energy 

is the reference along [001] direction.



Figure S15 The contribution to MAE from the SOC interaction between different p orbital channels 

along [100] (a) and [010] (b) directions for Br atoms under different uniaxial y strains. The energy 

is the reference along [001] direction.



8. The variations of Curie temperature (TC) under different strains.

Figure S16 The verities of TC for CrSBr monolayer under the biaxial strain.

Figure S17 The verities of TC under for CrSBr monolayer the x-directional uniaxial strain



Figure S18 The verities of TC for CrSBr monolayer under the y-directional uniaxial strain.


