Uniform nucleation and growth of Cs₃Cu₂I₅ nanocrystals with high luminous efficiency and structured stability and their application in white light-emitting diodes

Zirui Liu,^{†,a} Wei Li,^{†,a} Lin Wang,^{*,a} Fei Zhang,^b Sheng Wang,^a Junchuan Liu,^a

Chengxi Zhang,^a Luqiao Yin,^a Guohua Jia,^c Zhifeng Shi^{*,b} and Xuyong Yang *,^a

a. Key Laboratory of Advanced Display and System Applications of Ministry of Education, Shanghai University, 149 Yanchang Road, Shanghai 200072, China.
Email: lin wang@shu.edu.cn; yangxy@shu.edu.cn.

b. Key Laboratory of Materials Physics of Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Daxue Road 75, Zhengzhou 450052, China. E-mail: <u>shizf@zzu.edu.cn</u>.

 c. School of Molecular and Life Sciences, Curtin University, Perth, WA 6102, Australia.

Keywords : copper-based ternary halides, uniform nucleation, stable, white lightemitting diodes

Figure S1. XRD of Cs₃Cu₂I₅ NCs and standard PDF card of Cs₃Cu₂I₅.

Table S1. Summary of elemental contents of Cs, Cu, and I in Cs₃Cu₂I₅ NCs.

Element	Cs	Cu	Ι
Weight (%)	29.66	24.28	46.06

Figure S2. TEM images of $Cs_3Cu_2I_5$ NCs prepared by high-energy ultrasound method for (a) 1 min, (b) 2 min and (c) 5 min.

Figure S3. Tauc plot of the $Cs_3Cu_2I_5$ NCs.

Figure S4. The PL spectra and the fitting results of Cs₃Cu₂I₅ NCs.

Samples	$\tau_{1(ns)}$	A ₁ (%)	$\tau_{2(ns)}$	A ₂ (%)	$\tau_{avq(ns)}$
Cs ₃ Cu ₂ I ₅ -NCs	124	0.16	1072	0.84	1051

 Table S2. Summary of fitting data of PL decay curve.

Figure S5. PL spectra of Cs₃Cu₂I₅ NCs under different excitation wavelengths from

270	to	31	0	nm.

Table S3. Summary of the properties $Cs_3Cu_2I_5$ NCs in literatures.

NCs	PL peak (nm)	PLQY (%)	Ref
$Cs_3Cu_2I_5$	445	73.7	1
$Cs_3Cu_2I_5$	445	72.6	2
$Cs_3Cu_2I_5$	445	78.42	3
$Cs_3Cu_2I_5$	447	72.4	4
$Cs_3Cu_2I_5$	445	59	5
$Cs_3Cu_2I_5$	445	39.8	6

$Cs_3Cu_2I_5$	395	10	7
$Cs_3Cu_2I_5$	441	85	Our work

References

- 1. L. Lian, M. Zheng, W. Zhang, L. Yin, Adv. Sci., 2020, 7, 2000195.
- X. Hu, Y. Li, Y. Wu, W. Chen, H. Zeng, and X. Li, *Mater. Chem. Front.*, 2021, 5, 6152-6159
- 3. X. Hu, P. Yan, P. Ran, L. Lu, J. Phys. Chem. Lett., 2022, 13, 2862–2870.
- 4. C. Li, S. Cho, D. Kim, and I. Park, Chem. Mater., 2022, 34, 15, 6921-6932.
- 5. J. Zhou, K. An, P. He, J. Yang, et al, Adv. Optical Mater., 2021, 9, 2002144.
- 6. F. Zhang, W. Liang, L. Wang, Z. Ma, et al, Adv. Funct. Mater., 2021, 31, 2105771.
- A. L. M. Freitas, A. Tofanello, F. P. Sabino, et al, ACS Appl. Nano Mater., 2023, 6, 7196–7205.

Emitter	CRI	CCT (K)	LE (lm/W)	Ref
(CH ₆ N ₃) ₂ MnCl ₄	93.7	3984	90.41	1
$(NH_4)_2Sn_{1-x}Te_xCl_6$	83	3855		2
$Cs_2AgIn_{0.9}Bi_{0.1}Cl_6$	94.5	6432		3
$(C_{13}H_{30}N)_2SnCl_6$	96.7			4
$Cs_2SnCl_6: Bi^{3+}/Te^{4+}$	94	6386-3668		5
$Cs_2TeCl_6:Cr^{3+}$	81.3	5826		6
$Cs_2Zr_{1-x}Te_xCl_6$	74.8	4959	91.16	7
$OTA_{2^{+}x}SnI_{4^{+}x}$	92	2654		8
CsCu ₂ I ₃	83	6718		9

Table S4. Summary of the lead-free device performances of the prepared WLEDs.

$Cs_2NaInCl_6:Sb^{3+}\!/Sm^{3+}\!/Eu^{3+}\!/Tb^{3+}\!/Dy^{3+}$	80	8035	37.5	10
(OCTAm) ₂ SnBr ₄	89	6530		11
$(Cs_4N_2H_{14}Br)_4SnBr_xI_{6-x}$	84	5632	32.2	12
$(C_4N_2H_{14}Br)_4SnBr_6$	70	4946		13
$Cs_3Cu_2I_5/CsCu_2I_3$	89.5	5877	54.6	14
$Cs_3Cu_2I_5$	95.3	5489	41.5	This work

References

- 1. S. Wang, X. Han, T. Kou, et al, J. Mater. Chem. C., 2021, 9, 4895-4902.
- Z. Li, C. Zhang, B. Li, C. Lin, Y. Li, L. Wang, R. Xie, *Chemical Engineering Journal.*, 2021, 420, 129740.
- 3. Y. Zhang, Z. Zhang, W. Yu, et al, Adv. Sci., 2022, 9, 2102895.
- 4. W. Lin, Q. Wei, T. Huang, et al, J. Mater. Chem. C, 2023, Advance Article.
- 5. Z. Liu, X. Ji, Z. Ma, Laser Photonics Rev., 2023, 2300094.
- 6. L. Zi, W. Xu, Z. Song, R. Sun, J. Mater. Chem. C., 2023, 11, 2695-2702.
- Z. Li, Z. Rao, Q. Li, L. Zhou, X. Zhao, X. Gong, Adv. Optical Mater., 2021, 9, 2100804.
- 8. Z. Li, Z. Deng, A. Johnston, Adv. Funct. Mater., 2022, 32, 2111346.
- 9. W. Liu, K. W. Ng, H. Lin, Z. Dai, J. Phys. Chem. C., 2021, 125, 13076–13083.
- 10. X, Li, D, Wang, Y. Zhong, F. Jiang, Adv. Sci., 2023, 2207571.
- J. Sun, J. Yang, J. I. Lee, J. H. Cho, and M. S. Kang, J. Phys. Chem. Lett., 2018, 9, 1573–1583.
- 12. C. Zhou, Y. Tian, Z. Yuan, et al, ACS Appl. Mater. Interfaces., 2017, 9, 44579–44583.
- 13. C. Zhou, H. Lin, Y. Tian, Z. Yuan, Chem. Sci., 2018, 9, 586-593.
- 14. L. Wang, Z. Ma, F. Zhang, et al, J. Mater. Chem. C., 2021, 9, 6151-6159.