Supplementary Information

Synthesis of large area ReS₂ thin film by CVD for in-depth investigation of resistive switching: effect of metal electrode, channel width and noise behaviour

Pallavi Aggarwal^{1,3}, Hardhyan Sheoran¹, Prashant Bisht¹, Om Kumar Prasad³, Chin-Han Chung³, Edward Yi Chang³, Bodh Raj Mehta^{1,4}, and Rajendra Singh^{*1,2}

*Corresponding author

E-mail: rsingh@physics.iitd.ac.in

1 Department of Physics, Indian Institute of Technology Delhi, New Delhi-110016, India

2 Department of Electrical Engineering, Indian Institute of Technology Delhi, New Delhi-110016, India

3 International College of Semiconductor Technology, National Yang Ming Chiao Tung University, Hsinchu City-300093, Taiwan

4 Directorate of Research, Innovation and Development, Jaypee Institute of Information technology, Noida (U.P.), 201309, India

Section S1

XPS Fitting

X-ray photoelectron spectroscopy (XPS) was performed using the PHI Versa probe III system with a monochromatic X-ray source of Al K α (h ν = 1486.6 eV). XPS data was obtained over a 500 x 500 µm² area and with an analyser pass energy of 20 eV. All the XPS spectra were fitted in CasaXPS software after subtraction of a Shirley background. The spectra have been calibrated for the charging effect with respect to C 1s peak at 284.5 eV, obtained from small amount adventitious carbon present over the film. Gaussian-Lorentzian peak shapes with a 70/30 mix were used for all peaks. Spin-orbit splitting for the Re 4f core level is set to 2.43 eV and for the S 2p core level to 1.18 eV. An area constraint of 4:3 is used for all the peaks corresponding to Re-4f_{7/2}:Re-4f_{5/2}. Atomic ratio, Re:S is calculated from the Re-4f and S-2p peaks corresponding to ReS₂ in the high resolution scan of Re-4f and S-2p peaks.

Figure S1

Fig. S1 (a) Schematic of the device architecture. (b) Optical microscopic image depicting overview of the device. It shows presence of devices with 200, 100, and 50 μ m channel width all together. Optical microscopic image of (c) D1, (d) D2, and (e) D3. The scale provided in each figure is 400 μ m.

Fig. S2 EDAX spectra of the as-grown ReS_2 film showing peak signals from Re and S and depicting the atomic ratio, Re:S equal to 1:1.9, thereby indicating the formation of stochiometric film.

Figure S3

Fig. S3 Resistive switching cycle for device D2 at 30 and 100 °C. A change in HRS/LRS resistance ratio from 10^8 to 10^3 is observed which has been attributed to the weakening of Ag filament followed by which the current is dominated by defect mediated charge transport.

Fig. S4 RS cycles for D1 at the interval of 25 cycles. (a) 1st cycle, (b) 25th cycle, (c) 50th cycle,
(d) 75th cycle, (e) 100th cycle, (f) 125th cycle, (g) 150th cycle, (h) 175th cycle, and (i) 200th cycle.

Fig. S5 RS cycles for D2 at the interval of 25 cycles. (a) 1st cycle, (b) 25th cycle, (c) 50th cycle,
(d) 75th cycle, (e) 100th cycle, (f) 125th cycle, (g) 150th cycle, (h) 175th cycle, and (i) 200th cycle.

Fig. S6 RS cycles for D3 at the interval of 25 cycles. (a) 1st cycle, (b) 25th cycle, (c) 50th cycle,
(d) 75th cycle, (e) 100th cycle, (f) 125th cycle, (g) 150th cycle, (h) 175th cycle, and (i) 200th cycle.

Fig. S7 Device statistics depicting average of the SET voltage, V_{SET} , for the tested seven devices with channel length of (a) 200 μ m, (b) 100 μ m, and (c) 50 μ m. Plots clearly indicate increase in V_{SET} with channel width, which matches with the results reported in the manuscript. Histogram plot representing distribution of V_{SET} over 200 cycles for (d) D1, (e) D2, and (f) D3. V_{SET} is 6.55 \pm 0.63 V for D1, 4.6 \pm 0.5 V for D2, and 3.6 \pm 0.3 V. This small value of standard deviation represents device repeatability and stability over multiple cycles.

Table T1

Table T1. Comparison table containing reported R_{HRS}/R_{LRS} resistance ratio of memristors fabricated on 2DMs.

S.No	Contact Metal	Material	Geometry	R _{HRS} /R _{LRS}	Ref
1	Ti/Au	ReS ₂	Lateral	50	1
2	Ti/Au	ReS ₂	Vertical	106	2
3	Au	ReS ₂	Lateral	105	3
4	Au	MoS ₂	Vertical	-	4
	Ag/Au			10 ²	
5	Cu/ReSe ₂ /graphene	ReS ₂	Lateral	105	5
6	Ag, Cu	WS ₂	Vertical	4.2×10^{4}	6
7	Al	MoS ₂ -MoO _x	Vertical	108	7
8	Au, Cr/Au	hBN	Vertical	107	8
9	Ag/Au	ReS ₂	Lateral	108	This Work
	Pt/Au			10 ²	

Reference

- X. Wu, Y. Gu, R. Ge, M. I. Serna, Y. Huang, J. C. Lee and D. Akinwande, *npj 2D Mater. Appl. 2022 61*, 2022, 6, 1–12.
- M. E. Pam, S. Li, T. Su, Y. C. Chien, Y. Li, Y. S. Ang and K. W. Ang, *Adv. Mater.*, 2022, 34, 2202722.
- 3 C. Ke, F. Huang, Z. Zhang, X. Li, Z. Wu, C. Zhang, F. Xu, Y. Wu and J. Kang, *Appl. Phys. Express*, DOI:10.35848/1882-0786/ACC8B6.
- 4 K. Ranganathan, M. Fiegenbaum-Raz and A. Ismach, *Adv. Funct. Mater.*, 2020, **30**, 2005718.
- S. Rehman, H. Kim, M. F. Khan, J. H. Hur, J. Eom and D. kee Kim, J. Alloys Compd., DOI:10.1016/j.jallcom.2020.157310.
- Q. Cao, P. Zou, P. Li, L. Xiong, H. Bi and J. Wu, J. Mater. Sci. Mater. Electron., , DOI:10.1007/S10854-022-09612-9.
- D. Son, S. I. Chae, M. Kim, M. K. Choi, J. Yang, K. Park, V. S. Kale, J. H. Koo, C.
 Choi, M. Lee, J. H. Kim, T. Hyeon and D. H. Kim, *Adv. Mater.*, 2016, 28, 9326–9332.
- X. Wu, R. Ge, P. A. Chen, H. Chou, Z. Zhang, Y. Zhang, S. Banerjee, M. H. Chiang,
 J. C. Lee and D. Akinwande, *Adv. Mater.*, DOI:10.1002/ADMA.201806790.