Supplementary Information

Self-Assembly of Glycoprotein Nanostructured Filaments for Modulating Extracellular Network at Long Range

Roberto Matassa,^{a*} Marta Gatti,^a Martina Crociati,^{b,c} Roberto Brunelli,^d Ezio

Battaglione,^a Massimiliano Papi,^{e,f} Marco De Spirito,^{e,f} Stefania Annarita

Nottola,^a and Giuseppe Familiari^a

^a Department of Anatomical, Histological, Forensic and Orthopaedic Sciences, Section of Human Anatomy, Sapienza University of Rome, Via A. Borelli 50, 00161, Rome, Italy.

^b Department of Veterinary Medicine, University of Perugia, Via San Costanzo, 4, Perugia, 06126, Italy.

^c Centre for Perinatal and Reproductive Medicine, University of Perugia, 06129 Perugia, Italy.

^d Department of Gynecological-Obstetric and Urologic Sciences, Sapienza University of Rome, Rome, Italy.

^e Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Rome, Italy.

^f Fondazione Policlinico Universitario A. Gemelli IRCSS, 00168 Rome, Italy.

*Correspondence: roberto.matassa@uniroma1.it

Figure S1. Whole mount view of the transmission electron microscopy images of cross-sectioned Zona Pellucida. **a**) Immature stage. **b**) Mature stage. **c**) Fertilized stage. TEM images were merged to better image their morpho-structure features. Moreover, the outer surfaces of a biological system evidence shading effect capable of hiding depression onto the surface generated by irregular protrusions along the projection direction. Therefore, red dot line circles evidence the real aspect of the highest complex roughness containing forward or backward bending, voids, or other irregular texture profiles that it would not be possible to observe through surface microscopy techniques (i.e.: SEM, AFM, STM, etc..).

Table S1. Selected roughness profile parameters computed over the sampling length with a cut-off wavelength of 1/5th and ISO 4287 standard [International Organization for Standardization 1997, *ISO 4287:1997, Geometrical Product Specifications (GPS) – Surface texture: Profile Method – Terms, Definitions and Surface Texture Parameters,* ISO. Geneva, Switzerland.]. ISO 13565-2, 1996, *Geometrical Product Specifications (GPS) – Surface texture: Profile method; Surfaces having stratified functional properties – Part 2: Height characterization using the linear material ratio curve,* International Organization for Standardization, Geneva.

ZP Stage	Peak Count Number R _{pc}	Total Heigh R _t (μm)	ıt	Mean He Rc	ight Profile (μm)	Mean Width Profile R _{sm} (μm)		
Immature	8082±909	3.17±0.66		1.47	7±0.15	1.15±0.20		
Mature	7012±760	2.43±0.59		1.17	7±0.29		1.50±0.37	
Fertilized	4972±803	1.94±0.31		0.89	9±0.08	1.72±0.21		
ZP Stage	Skewness R _{sk}	Kurtosis R _{ku}	urtosis Roughnes R _{ku} R		Reduced Peak He Rpk (μm)	eight	Reduced Valley Height Rvk (μm)	
Immature	-0.18±0.10	3.01±0.19	1.:	0.39±0.3 0.39±0.3 Mr1= 6.27±3		3%	0.72±0.19 Mr2= 84.40±3.32%	
Mature	-0.45±0.13	3.50±0.25	3.50±0.25 0.9		0.32±0.10 Mr1= 7.13±0.84	1%	0.59±0.24 Mr2= 84.17±1.62%	
Fertilized	-0.21±0.10	3.26±0.21	3.26±0.21 0.6		0.22±0.07 Mr1= 5.72±1.12	2%	0.27±0.17 Mr2= 87.74±3.38%	

Note: \mathbf{R}_t : average height between maximum peak to minimum valley. \mathbf{R}_c : mean height of the neighbouring peak-valley pairs. \mathbf{R}_{sm} : mean width of the neighbouring peak-valley pairs. \mathbf{R}_{sk} : measure of the asymmetry of the profile about the mean line. \mathbf{R}_{ku} : measure of the peakedness of the profile about the mean line. \mathbf{R}_{pc} : total peak count numbers. \mathbf{R}_k : the roughness core profile is the height difference between those two points where the horizontal intersection lines cross the Material Ratio Curve. \mathbf{R}_{pk} : average reduced peak height of the protruding peaks above the core roughness profile. Rpk is calculated as the height of the right angle triangle, which has the same area as the peak area A1 and Mr1 as its base. \mathbf{R}_{vk} : average reduced valley height of the deep valleys below the core roughness profile. R_{pk} is the height of the right angle triangle, which has the same area as the peak area A1 and Mr1 as its base. \mathbf{R}_{vk} : average reduced valley area A2 and 100%-*Mr2* as its base. \mathbf{M}_{r1} : Material ratio where the upper horizontal intersection line which separates protruding peaks from the core roughness profile crosses the Material Ratio Curve. \mathbf{M}_{r2} : Material ratio where the lower horizontal intersection line which separates deep valleys from the core roughness profile crosses the Material Ratio Curve.

Gaussian curves of the deconvolved ZP-ADFs										
I-	ADF	M	-ADF	F-ADF						
Center(µm)	Amplitude(%)	Center(µm)	Amplitude(%)	Center(µm)	Amplitude(%)					
-1.05±0.02	0.09±0.01	_		_	_					
-0.94±0.01	0.14±0.03	_	_	_	_					
-0.85±0.00	0.19±0.05	-0.82±0.02	0.11±0.01	-0.80±0.01	0.11±0.01					
-0.74±0.01	0.20±0.01	-0.73±0.01	0.12±0.05							
		-0.66±0.01	0.15±0.03	-0.65±0.01	0.26±0.01					
-0.58±0.01	0.30±0.02	-0.57±0.01	0.28±0.01	-0.54±0.01	0.25±0.05					
-0.48±0.01	0.36±0.07		—	-0.47±0.01	0.34±0.16					
-0.42±0.01	0.41±0.18	_	_	-0.39±0.01	0.44±0.04					
-0.34±0.01	0.40±0.03	-0.34±0.01	0.46±0.01	-0.30±0.01	0.50±0.12					
_	_	-0.26±0.01	0.54±0.05	-0.24±0.01	0.66±0.12					
-0.21±0.01	0.61±0.04	-0.21±0.01	0.59±0.02	-0.20±0.01	0.67±0.17					
	_	-0.16±0.01	0.57±0.11	-0.16±0.01	0.70±0.12					
-0.12±0.01	0.57±0.14	-0.11±0.01	0.70±0.04	-0.11±0.01	0.83±0.04					
-0.05±0.01	0.55±0.16	-0.02±0.01	0.67±0.04	-0.05±0.01	0.75±0.09					
0.01±0.01	0.62±0.07	0.03±0.01	0.70±0.19	0.01±0.01	0.79±0.06					
0.08±0.01	0.64±0.14	0.08±0.01	0.69±0.10	0.07±0.01	1.01±0.04					
0.14±0.01	0.61±0.23	0.13±0.01	0.78±0.17	0.14±0.01	0.87±0.10					
—	—	0.17±0.01	0.67±0.11	—	—					
0.21±0.01	0.62±0.17	0.24±0.01	0.78±0.08	0.21±0.01	0.95±0.07					
0.27±0.01	0.69±0.16	—	—	—	—					
0.34±0.01	0.57±0.19	0.33±0.01	0.68±0.05	0.32±0.01	0.71±0.05					
0.43±0.01	0.50±0.09	0.40±0.01	0.47±0.21	0.39±0.01	0.61±0.08					
_	—	0.46±0.01	0.38±0.20	0.45±0.01	0.32±0.01					
0.52±0.01	0.41±0.11	0.53±0.01	0.26±0.17	0.55±0.01	0.15±0.01					
0.60±0.01	0.34±0.12	0.62±0.05	0.17±0.07	—	—					
0.68±0.01	0.34±0.06	—	—	0.68±0.01	0.12±0.02					
0.78±0.01	0.25±0.01	0.81±0.01	0.07±0.02							
0.95±0.01	0.14±0.01	_		_						
1.05±0.01	0.08±0.04	_		_	_					
1.15±0.01	0.10±0.01	_	_	_	_					

Table S2. Estimated center of each Gaussian function with the corresponding amplitudes of the ADF profiles

Figure S2. 2D filled pores map of the shell-arc cross-sectional of Zona Pellucida from immature to fertilized stages (Figures S1-a-c).

ZP Phase	Counts	Total Area (μm²)	Total Porosity (%)	Total Perimeter (μm)	Average Pore Length (μm)	Average Pore Width (μm)
	1	799.19±0.09		317.18±0.04	0.22±0.01	
Immature	406	45.86±0.01	5.74	592.46±0.09	0.46±0.01 0.75±0.02	0.16±0.01
	1	475.22±0.12	_	130.46±0.07	0.27±0.01	
Mature	285	20.29±0.01	4.23	382.77±0.07	0.44±0.02 0.55±0.04 0.67±0.03	0.14±0.01
	1	509.73±0.04	_	219.53±0.03	0.31±0.01	
Fertilized	159	12.08±0.01	2.34	247.53±0.09	0.55±0.02 0.74±0.01	0.12±0.01

Table S3	Mornhometric	Pores	Parameters
Table 33.	with priorite the	10163	1 arameters

Note: p < 0.001 statistical significant difference between experimental and theoretical data fitting.

Voight Peaks Deconvolution of the ZP-RPs											
I-RP M-RP F-RP											
(Std Err - 11.65%, F	WHM – 0.40 μm)	(Std Err – 7.56%, F	WHM – 0.43 μm)	(Std Err - 8.62%, F)	WHM – 0.40 μm)						
Center	Amplitude	Center	Amplitude	Center	Amplitude						
(μm)	(μm)	(μm)	(μm)	(μm)	(μm)						
43.34±0.12	0.14±0.10	41.67±0.11	0.18±0.05	52.98±0.11	0.19±0.09						
44.00±0.11	0.21±0.07	43.68±0.08	0.23±0.05	53.83±0.10	0.20±0.08						
44.70±0.09	0.18±0.10	44.78±0.05	0.19±0.05	54.77±0.09	0.20±0.08						
45.31±0.12	0.18±0.11	45.34±0.06	0.25±0.06	55.35±0.10	0.13±0.09						
46.15±0.08	0.17±0.08	45.84±0.06	0.18±0.05	55.86±0.08	0.24±0.10						
46.60±0.10	0.15±0.09	46.46±0.10	0.20±0.05	56.42±0.08	0.28±0.10						
47.07±0.12	0.12±0.08	46.95±0.06	0.20±0.05	57.06±0.07	0.20±0.07						
47.69±0.11	0.15±0.07	47.53±0.06	0.13±0.03	57.56±0.08	0.12±0.09						
48.31±0.10	0.17±0.08	47.96±0.09	0.16±0.05	58.05±0.04	0.30±0.07						
49.00±0.09	0.18±0.08	48.35±0.05	0.15±0.04	58.41±0.07	0.11±0.05						
49.64±0.08	0.15±0.06	48.78±0.09	0.19±0.04	58.73±0.09	0.13±0.06						
50.41±0.08	0.18±0.06	49.09±0.03	0.16±0.05	59.04±0.08	0.15±0.09						
51.14±0.06	0.19±0.06	49.42±0.07	0.12±0.04	59.31±0.08	0.15±0.07						
51.64±0.05	0.21±0.06	49.84±0.04	0.23±0.05	59.52±0.04	0.11±0.05						
52.14±0.04	0.19±0.06	50.22±0.05	0.13±0.04	59.77±0.09	0.16±0.06						
52.69±0.10	0.37±0.08	50.57±0.05	0.21±0.05	60.12±0.07	0.12±0.06						
53.25±0.03	0.36±0.07	50.95±0.12	0.13±0.03	60.43±0.08	0.09±0.06						
53.95±0.13	0.28±0.13	51.30±0.07	0.15±0.04	60.80±0.08	0.15±0.07						
54.51±0.14	0.37±0.11	51.64±0.03	0.20±0.05	61.27±0.10	0.16±0.09						
54.93±0.04	0.30±0.05	51.95±0.01	0.24±0.05	61.66±0.11	0.14±0.09						
55.27±0.06	0.21±0.06	52.30±0.04	0.17±0.04	—	—						
55.66±0.02	0.17±0.06	52.84±0.03	0.31±0.06	_	—						
56.03±0.11	0.68±0.09	_		_							
56.64±0.06	0.16±0.06	_	_	_	_						
57.15±0.05	0.19±0.07			_							
57.56±0.06	0.27±0.08	_	_	—	—						
58.06±0.10	0.15±0.09	_		—	_						
58.61±0.11	0.26±0.10	_	_	_	_						
59.30±0.13	0.20±0.11										
Radial Frequency (µm)	Pore Domain: Number & Rate (, %)	Radial Frequency (µm)	Pore Domain: Number & Rate (, %)	Radial Frequency (µm)	Pore Domain: Number & Rate (, %)						
0.57±0.02	20.31±2.02, 5.00 %	0.37±0.01	20.43±1.94, 7.17 %	0.36±0.04	16.64±1.75, 10.47 %						

Table S4. Parameters of the deconvoluted Voight curves fitting the radial profile.

Voight Peaks Deconvolution of the ZP-APs												
I-AP M-AP F-AF												
(Std Err - 13.84%, F)	NHM - 1.41 μm)	(Std Err – 8.42%, F	[:] WHM - 1.41 μm)	(Std Err – 10.12%, F	WHM - 1.03 μm)							
Center	Amplitude	Center	Amplitude	Center	Amplitude							
(deg.)	(μm)	(deg.)	(μm)	(deg.)	(μm)							
57.25±0.17	0.18±0.16	62.51±0.09	0.19±0.05	64.27±0.12	0.21±0.07							
59.46±0.09	0.20±0.06	65.22±0.05	0.31±0.04	65.95±0.13	0.22±0.09							
61.32±0.08	0.22±0.06	67.27±0.12	0.19±0.08	68.06±0.10	0.08±0.09							
63.80±0.07	0.21±0.06	69.08±0.05	0.13±0.04	70.03±0.09	0.23±0.07							
65.91±0.08	0.27±0.06	70.50±0.08	0.10±0.04	72.02±0.10	0.09±0.09							
68.07±0.06	0.37±0.07	71.84±0.06	0.23±0.05	74.33±0.09	0.20±0.08							
69.76±0.10	0.14±0.09	73.63±0.03	0.13±0.03	76.03±0.08	0.14±0.06							
70.94±0.10	0.15±0.09	75.58±0.03	0.36±0.03	79.10±0.08	0.22±0.08							
72.72±0.12	0.30±0.09	77.26±0.05	0.15±0.04	83.33±0.09	0.16±0.08							
74.70±0.13	0.24±0.09	79.09±0.06	0.19±0.05	85.39±0.08	0.15±0.06							
76.84±0.08	0.16±0.05	81.52±0.08	0.18±0.04	87.52±0.06	0.21±0.05							
78.84±0.11	0.22±0.08	83.54±0.04	0.17±0.04	89.56±0.09	0.16±0.07							
80.64±0.09	0.15±0.06	85.15±0.06	0.29±0.05	90.97±0.08	0.05±0.06							
82.55±0.12	0.15±0.08	87.40±0.05	0.23±0.04	92.29±0.10	0.14±0.08							
84.49±0.10	0.21±0.09	89.34±0.05	0.21±0.04	94.19±0.08	0.13±0.06							
86.64±0.07	0.17±0.06	91.08±0.04	0.15±0.03	95.92±0.09	0.19±0.08							
89.61±0.12	0.22±0.10	92.83±0.07	0.20±0.04	98.14±0.07	0.12±0.07							
92.64±0.09	0.22±0.08	94.63±0.06	0.18±0.03	100.38±0.05	0.25±0.06							
94.52±0.11	0.13±0.09	96.81±0.06	0.19±0.04	102.09±0.08	0.13±0.06							
96.89±0.12	0.81±0.09	99.04±0.07	0.16±0.03	104.26±0.11	0.18±0.09							
99.00±0.06	0.28±0.08	100.95±0.08	0.25±0.05	106.04±0.10	0.15±0.07							
100.60±0.06	0.19±0.07	103.06±0.11	0.26±0.05	108.94±0.11	0.23±0.07							
102.42±0.05	0.23±0.05	105.82±0.10	0.26±0.05	111.64±0.08	0.20±0.06							
106.00±0.07	0.21±0.06	110.25±0.08	0.27±0.05	112.98±0.09	0.09±0.06							
107.95±0.09	0.22±0.08	112.77±0.06	0.29±0.04	114.39±0.10	0.31±0.06							
110.02±0.05	0.16±0.07	115.26±0.07	0.17±0.04	115.99±0.11	0.11±0.08							
111.85±0.06	0.18±0.07	117.64±0.06	0.26±0.05	—	—							
113.55±0.09	0.19±0.08	_	_	_	_							
114.75±0.13	0.25±0.11		—	—	—							
117.09±0.10	0.49±0.08	_	_	_	_							
120.32±0.12	0.26±0.10	—	—	—	—							
122.49±0.08	0.10±0.10	_	_	_	_							
124.45±0.11	0.17±0.10		_	_	_							
Angular Frequency (deg.)	Pore Domain: Number & Rate (, %)	Angular Frequency (deg.)	Pore Domain: Number & Rate (, %)	Angular Frequency (deg.)	Pore Domain: Number & Rate (, %)							
1.90±0.15	13.85±2.40, 3.41 %	1.91±0.03	10.12±1.31, 3.55 %	1.88±0.07	6.65±0.69, 4.18 %							

 Table S5. Parameters of the Deconvoluted Voight curves fitting the angular profile.

Overlapping Images of Interconnected Glycoprotein Filaments-Skeleton Segments

(Ctd Curr C 909/	-ZP	(Stal Far 0.429/	F/A/UNA (4.22 mm)								
(Sta Err - 5.80%,	, FVVFIVI – 3.01 nm)	(Sta Err - 9.42%,	r vv rivi – 4.22 nm)	(Sta Err - 4.25%, r	- vv mvi = 3.38 mm)						
(nm)	(%)	(nm)	(%)	(nm)	(%)						
9.99±0.47	0.40±0.33	9.90±0.37	0.27±0.15	9.89±0.14	0.46±0.10						
14.23+0.10	0.64+0.06	14.19+0.11	0.43+0.10	14.64+0.08	0.72+0.05						
17,19+0.08	0.83+0.10	17.11+0.10	0.62+0.09	17.21+0.09	0.71+0.05						
23 02+0 16	0.57+0.05	23 89+0 23	0.60+0.08	23 43+0 11	0 70+0 05						
27.11+0.13	0.67+0.06	27.82+0.17	0.70+0.10	26.87+0.12	0.66+0.06						
30.92+0.16	0.61+0.06	31.02+0.18	0.72+0.09	30.64+0.09	0.68+0.07						
35.93+0.10	0.82+0.06	36.77+0.18	0.79+0.08	36.47+0.09	0.77+0.06						
40.12+0.13	0.71+0.07	41.60+0.13	0.69+0.09	40.34+0.10	0.86+0.06						
44.22+0.12	0.76+0.07	45.63+0.18	0.78+0.10	44.58+0.08	0.85+0.08						
48.66+0.14	0.79+0.07	49.93+0.25	0.78+0.08	49.31+0.12	0.83+0.08						
53 46+0 15	0.75+0.07	55 92+0 19	0.78+0.08	53 40+0 11	0.94+0.09						
57.71+0.17	0.70+0.08	60.13+0.20	0.78+0.11	57.72+0.12	0.95+0.09						
62.10+0.18	0.82+0.07	63.44+0.20	0.86+0.10	62.57+0.14	0.90+0.11						
66.79+0.18	0.79+0.09	68.74+0.20	1.02+0.08	66.97+0.10	1.09+0.09						
70.78+0.15	0.86+0.10			71.41+0.10	1.03+0.10						
74,94+0.20	0.90+0.09	74.83+0.21	0.96+0.13								
		76.85+0.19	0.96+0.10	75,70+0.08	1,12+0,10						
80 22+0 18	1 02+0 08	82 70+0 16	1 01+0 11	81 11+0 09	1 16+0 10						
84 42+0 11	0.87+0.11			85 45+0 09	1 02+0 12						
88 02+0 19	0.95+0.08	87 83+0 20	1 11+0 09	88 79+0 09	1 11+0 10						
93 70+0 17	0.96+0.09			94 00+0 11	1 04+0 08						
98 87+0 22	0.85+0.08	98 06+0 21	1 09+0 08	98 90+0 16	0.80+0.09						
		104 00+0 17	0.99+0.09	101 91+0 17	0.76+0.10						
106 47+0 18	0.89+0.06		0.55±0.05	107.69+0.19	0.73+0.08						
110 89+0 14	0.65±0.00	111 81+0 22	0 97+0 08	112 96+0 24	0.63±0.00						
114 61+0 19	0.75+0.08										
120 04+0 21	0.76+0.07	118 61+0 26	0 87+0 08	115 71+0 20	0.65+0.06						
124 63+0 17	0.72+0.08	124 06+0 29	0.73+0.13	123 53+0 15	0.53±0.00						
128.95+0.21	0.68+0.07	127.45+0.29	0.79+0.09	127.83+0.19	0.55±0.05						
133 61+0 27	0.57+0.08	133 62+0 19	0.86+0.07	133 97+0 21	0 48+0 04						
137 75+0 25	0.53+0.06			140 88+0 17	0.37+0.04						
143 70+0 26	0.45+0.06				0.37±0.04						
149 20+0 24	0.46+0.05			147 74+0 16	0 34+0 04						
	0.4010.05			153 44+0 20	0.27+0.04						
156 61+0 29	0 38+0 04	157 50+0 22	0 58+0 04	157 33+0 16	0.33+0.04						
164 29+0 34	0.36±0.04		0.50±0.04	162 13+0 24	0.24+0.04						
	0.30±0.04	_		168 48+0 20	0.24±0.04						
		172 17+0 25	0 37+0 05	100.40±0.20	0.23±0.03						
			0.57±0.05	176 49+0 26	0 19+0 02						
		187 79+0 31	0.31+0.05								
		201 95+0 36	0.0110.00								
		201.9310.30	0.2010.05								

Table S6. Parameters of the deconvoluted Gaussian curves fitting the filament lengths.

(Gly-filamer	t Arranger	ments of Ir	nmature Z	P Filament	s	Gly-filament Arrangements of Mature ZP Filaments				Gly-filament Arrangements of Fertilized ZP Filaments									
Exper.	Theo	oretical Fila	ament Len	gths and G	lob-Rod Ar	ngles	Exper. Theoretical Filament Lengths and Glob-Rod Angles Exper. Theoretical Filament Lengths and G					ths and G	ob-Rod An	gles						
Center	Length	Angle	Length	Angle	Length	Angle	Center	Length	Angle	Length	Angle	Length	Angle	Center	Length	Angle	Length	Angle	Length	Angle
(nm)	(nm)	(°)	(nm)	(°)	(nm)	(°)	(nm)	(nm)	(°)	(nm)	(°)	(nm)	(°)	(nm)	(nm)	(°)	(nm)	(°)	(nm)	(°)
9.99	9.99	—	9.99	—	9.99	—	9.90	9.90	—	9.90	—	9.90	—	9.89	9.89	—	9.89		9.89	—
14.23	—	—	—	—	14.23	—	14.19	—	—	—	—	14.19	—	14.64	—	—	—	—	14.64	—
17.19	17.19	—	17.19		—		17.11	17.11	—	17.11	—			17.21	17.21		17.21		_	
23.02	—	—	—	—	24.15	116.87	23.89	—	—	—	—	24.89	122.57	23.43	—	—	—	—	24.56	112.56
27.11	27.11	104.09	—	—	—	—	27.82	27.82	108.77	—	—	—	—	26.87	26.99	103.28	—	—	—	—
30.92	—	—	29.64	119.11	—	—	31.02	—	—	30.22	124.03	—	—	30.64	—	—	29.44	117.80	—	—
35.93	—	—	—	—	36.63	122.56	36.77	—	—	—	—	37.49	125.23	36.47	—	—	—		37.31	119.44
40.12	40.65	103.93	—	—	—	—	41.60	41.60	107.29	—	—	—	—	40.34	40.51	103.55	—	—	—	_
44.22	—	—	44.06	114.03	—	—	45.63	—	—	45.22	122.62	—	—	44.58	—	—	43.93	114.90	—	—
48.56	—	—	—	—	49.14	123.07	49.93	—	—			50.11	125.58	49.31	—	—	—	—	50.05	119.29
53.46	54.22	104.26	—	—	—	—	55.92	55.52	108.89	—	—	—	—	53.40	54.11	104.41	—		—	—
57.71	—	—	57.71	105.13	—	—	60.13	—	—	59.93	118.44	—	—	57.72	—	—	57.98	108.48	—	—
62.10	—	—	—	—	61.61	122.40	63.44	—	—	—	—	62.72	125.40	62.57	—	—	—		62.86	120.37
66.79	67.73	103.71	—	—	—	—	68.74	69.39	108.31	—	—	—	—	66.97	67.65	103.76	—	—	—	—
70.78	—	—	71.35	105.13	—	—	74.83	—	—	74.20	113.14	—	—	71.41	—	—	71.74	106.34	—	—
74.94	—	—	—	—	74.03	121.57	76.85	—	—	_	_	75.33	125.40	75.70	—	_	—	_	75.80	122.48
80.22	81.27	103.82	—	—	—	—	82.70	83.31	108.89	—	—	—	—	81.11	81.20	103.98	—		—	—
84.42	—	—	85.06	105.79	—	—	87.83	—	—	88.94	118.83	87.34	115.63	85.45	—	_	85.45	105.79	—	_
88.02	—	—	—	—	86.67	125.31	98.06	97.64	113.75	—	—	99.34	115.48	88.79	—	—	—	—	88.79	123.27
93.70	94.77	103.50	—	—	—	—	104.00	—	—	103.67	118.83	—	—	94.00	94.73	103.55	—	—	—	—
98.87	—	—	99.31	111.99	99.26	124.44	111.81	112.21	116.76	—	—	111.71	121.32	98.90	—	—	99.13	105.46	—	—
106.47	108.29	103.71	—	—	—	—	118.61	—	—	118.50	120.16	—	—	101.91	—	—	—	—	101.81	123.66
110.89	—	—	—	—	111.77	123.07	124.06	—	—	—	—	124.06	120.99	107.69	108.21	103.12	—	—	—	—
114.61	—	-	114.01	117.55	—	—	127.45	127.03	120.03	—	—	—	—	112.96	—	—	112.96	107.13	—	—
120.04	121.81	103.71	—	—	—	—	133.62	142.00	122.07	133.44	121.65	—	—	115.71	—	—	—	_	114.82	123.57
124.63	—	-	—	—	124.38	124.78	157.50	157.01	122.62	—	—	—	—	123.53	121.75	103.76	—	—	—	—
128.95	—	-	128.55	115.52	—	—	172.17	171.97	121.93	—	—	—	—	127.83	—	—	127.06	110.21	—	—
133.61	135.39	104.36	—	—	—	—	187.79	186.89	121.38	-	—	—	—	133.97	135.29	103.76	—	—	-	—
137.75	—	-	—	—	136.91	123.41	201.95	201.85	121.93	—	—	—	—	140.88	—	—	140.78	105.90	—	—
143.70	—	-	143.23	117.29	—	—	—	—	—	—	—	—	—	147.74	148.85	103.98	—	—	—	—
149.20	149.20	103.71	—	—	—	—	—	—	—	—	—	—	—	153.44	—	—	154.58	106.79	—	—
156.61	—	-	157.04	106.90	—	—	—	—	—	—	—	—	—	157.33	—	-	—	—	—	—
164.29	163.09	107.81	—	—	—	—	—	—	—	—	—	—	—	162.13	162.43	104.19	—		—	—
—	—	—	—	—	—	—	—	—	—	—	—	—	—	168.48	—	—	168.48	107.92	—	
—	—	—	—	—	—	—	—	—	—	—	—	—	—	176.49	176.29	107.28	—		—	

Table S7. Parameters of the Deconvoluted Gaussian curves fitting the network filament segments. And theoretical prediction of the filament lengths related to glob-rod angles.

ZP Stage	Filamer	Total nt Segments	Total Inte Ra	rconnections te (%)	Unbranch Ra	ed Filaments te (%)	Triple Interconnections Rate (%)			
Immature	1	11056	6	4.77	4	1.63	63.70			
Mature	1	11408	6	4.38	-	7.82	63.32			
Fertilized		9654	6	1.02	1	6.22	60.27			
	D (9/)			Туре	e I	Type II	Туре			
ZP Stage	Lengths (type I) Lengths (type II)		R _{Hamilton} (%) Lengths (type III)	Average Glob-Rod Angles	Total Sub-Unit	Average Glob-Rod Angles	Total Sub-Unit	Average Glob-Rod Angles	Total Sub-Unit	
Immature	1.12	1.88	1.13	104.53±1.43°	12	111.83±5.64°	11	122.75±2.36°	11	
Mature	0.58	0.65	0.56	0.56 115.10±6.39°		13 119.72±4.33°		121.96±4.85°	10	
Fertilized	0.94	1.03	1.40	103.99±1.05°	14	108.90±3.94°	11	120.59±3.72°	9	

Table S8. Summary results of the structural parameters of gly-filaments.