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S1. Generation of datasets and proposal of deep learning network

The generation of datasets and the proposal of network were the technical elements of deep 

learning research. As mentioned above, this study was devoted to the application of deep 

learning modeling multi-body system to realize the mapping of Pt/graphene substrate structure 

to water molecule transport landscape. Therefore, 1) point cloud (a collection of points in a 

specified space), as a flexible data format, was used to characterize the collection of 

nanoparticles in 3D Pt/graphene substrate, 2) two types of point clouds were extracted to 

represent the properties of Pt/graphene substrate and water molecules respectively and further 

construct datasets, and 3) a deep learning network with dual input and sampling channels was 

proposed.

LAMMPS software could directly mesh the MD simulation results and output high-

resolution points, which was the geometric center points of each mesh. For all the cases, the 

orthogonal Cartesian grid method was used with mesh size 1 Å and the extracted mesh data was 

from a block with a size of 200 Å×200 Å×50 Å, corresponding to the evaluation region. The 

related MD insufficient sampling problem for velocity field and the proposal of nanoparticle 

tracking optimization strategy was detailed in Chapters 3.2 and 3.3. We constructed four deep 

learning datasets (water molecule adsorption or flow under uniform or random distribution of 

Pt). Each sample in each dataset (all points extracted from the MD simulation result of one case 

was called one sample) is composed of two types of point clouds, as shown in Figure 2. The 

solid point cloud characterizing the Pt/graphene structure could be expressed as , where {𝑁1 ∗ 𝑃1}

 represented the total number of points in the solid point cloud in a sample, and  𝑁1 𝑃1

represented the properties of the solid. The liquid point cloud that characterizes adsorption or 

flow could be expressed as , where  represented the total number of points in the {𝑁2 ∗ 𝑃2} 𝑁2

liquid point cloud of water molecules in a sample, and  represented the transportation 𝑃2

properties of water molecules. The universality and scalability of the proposed deep learning 

algorithm mainly relied on the multidimensional attribute input of  and , see Chapter 3.5 for 𝑃1 𝑃2
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further explanation. Here,  mainly included the spatial coordinates of each point that could 𝑃1

represent the structure of the Pt/graphene structure, and molecular type labels (a Pt atom was 

assigned to a value of 0, and a graphene atom was assigned to a value of 1), and  mainly 𝑃2

included the spatial coordinates of each mesh and transport properties of water molecules 

(density or velocity components in three directions). For the four datasets, each dataset is 

randomly divided into a training set and a test set at a ratio of 9:1 as shown in Table1.

S2. Design and advantages of our network

For the design and advantages of our network (including fully open source code), such as 

dual channel vs. single channel, fully connected layer shared weight vs. non-shared weight, the 

impact on prediction errors has been explained in detail by using control experiments in our 

previous work1,2. Here, we focused on the feature extraction and processing of point cloud by 

network. The network is shown in Figure 3 with two input and sampling channels to receive 

and process solid point cloud and liquid point cloud, respectively. For the sampling module, in 

order to enhance the correlation between the two types of point clouds and improve the network 

prediction performance, the first two feedforward fully connected layers (FC1 and FC2) shared 

the weight, that was, they shared the same underlying feature extraction method. The two types 

of point clouds entered two independent feedforward full connection layers (FC3 and FC4) after 

FC2, which were used to extract the structural features of catalyst point cloud and the 

transportation features of liquid point cloud. After the processing of sampling module, the 

structural features and transportation features were abstracted into  and  {𝑁1 ∗ 512} {𝑁2 ∗ 128}

dimensional vectors respectively and integrated into an  dimensional {𝑁3 ∗ 640 (512 +  128)}

vector in the feature stitching module, followed by the output module, whose function was 

equivalent to the convolutional neural network decoding operation 3. The  dimensional {𝑁3 ∗ 640}

vector could be decoded into  water molecule transport behavior.{𝑁2 ∗ 𝑃2}

For other details of the network, we added a Maxpooling layer as a symmetric function in 
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the sampling module, which could aid in resolving the disorder of the input point cloud 2. The 

mean absolute error (MSE) was selected as the loss function. Adam was selected as the 

optimizer with hyper-parameters: learning rate=0.001, ε=0.001, ρ1=0.9, ρ2=0.999, and δ=1E−8 

4.

S3. Network training and testing process

The deep learning network was trained in the TensorFlow (2.0.0rc, Python3.6) environment 

on a Nvidia GeForce GTX 1080 Ti GPU. Batch size was set at 1 and epoch was set at 1000. 

The four datasets need to be trained separately using independent networks. During the training 

process, we saved the weight configuration with the minimum loss function value, and there 

were four trained networks for testing and performance evaluation. In the test process, the 

adsorption or flow properties of water molecules in  could be predicted by inputting the 𝑃2

structural attributes of the Pt/graphene substrate in  and only the spatial coordinate 𝑃1

information in  into the trained networks.𝑃2

S4. Discussion on the system size effect

The dependence of the static and dynamical properties on the system size has been studied 

widely. Patrick et al. indicated that the system become more locally organized for the small 

system size5. Yeh et al. indicated that for the water molecules and a Lennard-Jones (LJ) fluid, 

the diffusion coefficients increase as the system size increases, while the shear viscosities show 

no significant system-size dependences6,7. For thermal conductivity, minimum system size 

should be comparable to the largest mean-free paths8. In the present study, the system was in x 

and y periodic boundary conditions in order to minimize the finite-size effects. The size of 

system was much larger than that the minimum possible sizes that used in our previous study 

with the same water model9. Considering the correlation between velocity distribution and 

diffusivity coefficients, the possibility of system size dependence of the velocity distribution 

was high. Nevertheless, as we indicated that velocities of individual atoms are subject to error 
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and thermal fluctuations, the increase in the box volume could not completely exclude the 

possibility of a finite size effect on velocity distribution. The effect of the size of the present 

system on the velocity field in chaotic systems needs to be further elucidated in future work. 
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