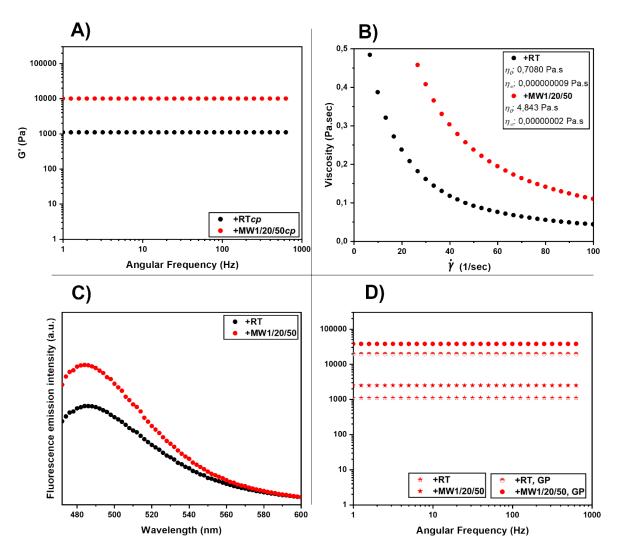
# **Electronic Supplementary Information**

## Low-Power Microwaves: a Cell-Compatible Physical Treatment to Enhance Self-Assembling Peptides Mechanical Properties

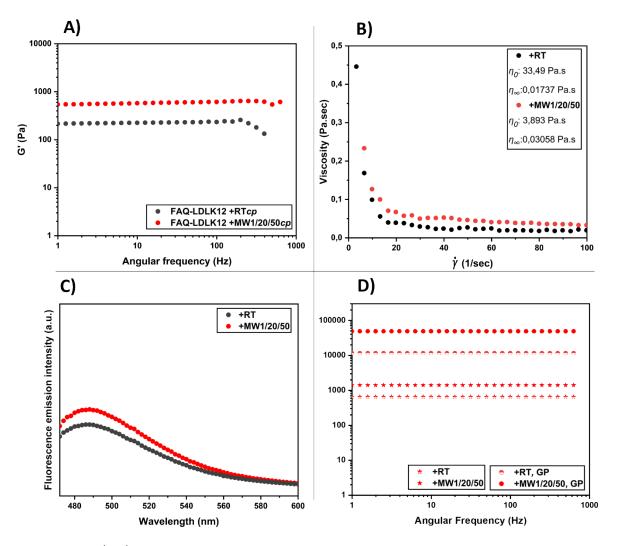
Maria Gessica Ciulla,<sup>1</sup> Amanda Marchini,<sup>1,2</sup> Jacopo Gazzola,<sup>3</sup> Manuel Sambrotta,<sup>4</sup> and Fabrizio Gelain<sup>1,2,\*</sup>

<sup>1</sup> Institute for Stem-Cell Biology, Regenerative Medicine and Innovative Therapies, IRCCS Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo, Italy.

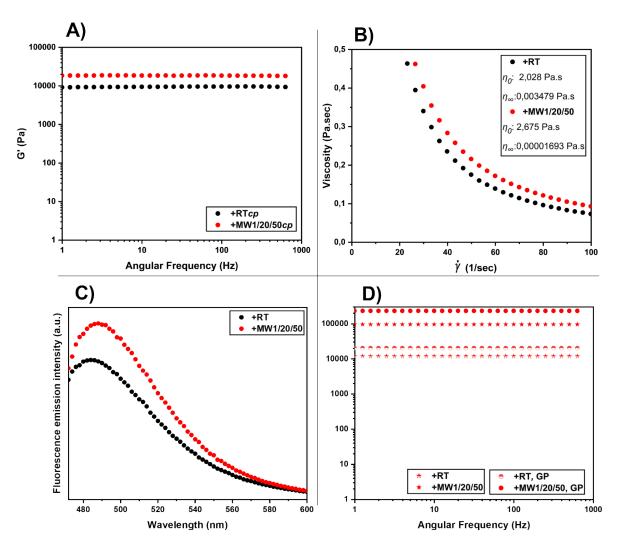

<sup>2</sup> Center for Nanomedicine and Tissue Engineering (CNTE), ASST Grande Ospedale Metropolitano Niguarda, 20162 Milan, Italy.

<sup>3</sup> Department of Biotechnology and Bioscience, University of Milan – Bicocca, 20125 Milan, Italy.

<sup>4</sup> Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, 20133 Milan, Italy

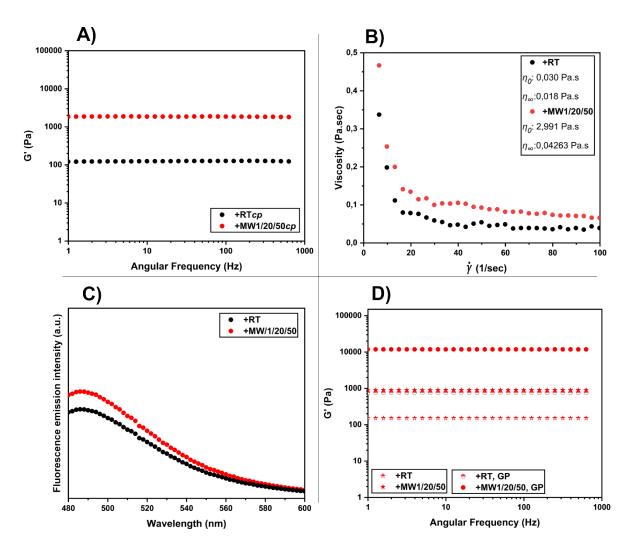

\* Corresponding author. E-mail: f.gelain@css-mendel.it; Tel.: +39-02-6444-7519

### LDLK12

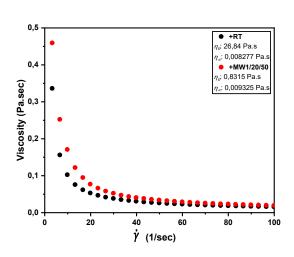



**Fig. S1.** +MW1/20/50 treatment on LDLK12. A), B) and D) Rheological experiments. A) Frequency sweep test using a cone-plate geometry. B) Viscosity test, performed in a cone-plate geometry *via* continuous shear ramp. C) ThT binding assay. D) Frequency sweep test in a parallel-plate geometry to investigate the effect of Genipin cross-linking after MW treatment.

## FAQ-LDLK12

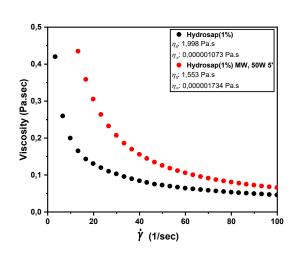



**Fig. S2.** +MW1/20/50 treatment on FAQ-LDLK12. A), B) and D) Rheological experiments. A) Frequency sweep test using a cone-plate geometry. B) Viscosity test, performed in a cone-plate geometry *via* continuous shear ramp. C) ThT binding assay. D) Frequency sweep test in a parallel-plate geometry to investigate the effect of Genipin cross-linking after MW treatment.



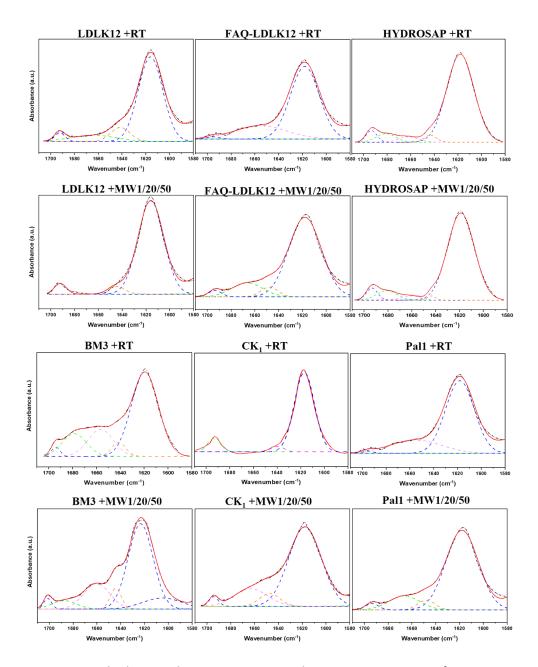

**Fig. S3.** +MW1/20/50 treatment on  $CK_1$ . A), B) and D) Rheological experiments. A) Frequency sweep test using a cone-plate geometry. B) Viscosity test, performed in a cone-plate geometry *via* continuous shear ramp. C) ThT binding assay. D) Frequency sweep test in a parallel-plate geometry to investigate the effect of Genipin cross-linking after MW treatment.

## Pal1



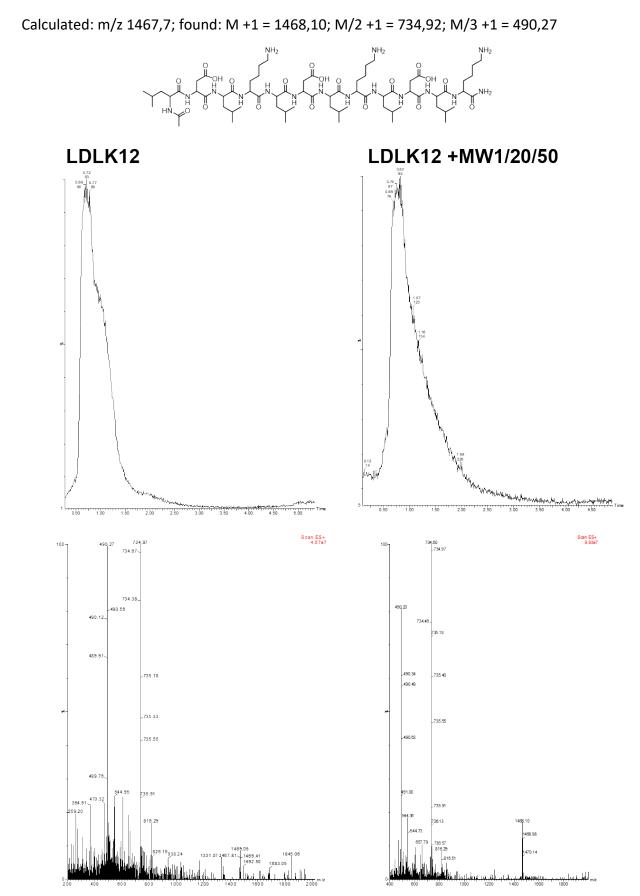

**Fig. S4.** +MW1/20/50 treatment on Pal1. A), B) and D) Rheological experiments. A) Frequency sweep test using a cone-plate geometry. B) Viscosity test, performed in a cone-plate geometry *via* continuous shear ramp. C) ThT binding assay. D) Frequency sweep test in a parallel-plate geometry to investigate the effect of Genipin cross-linking after MW treatment.



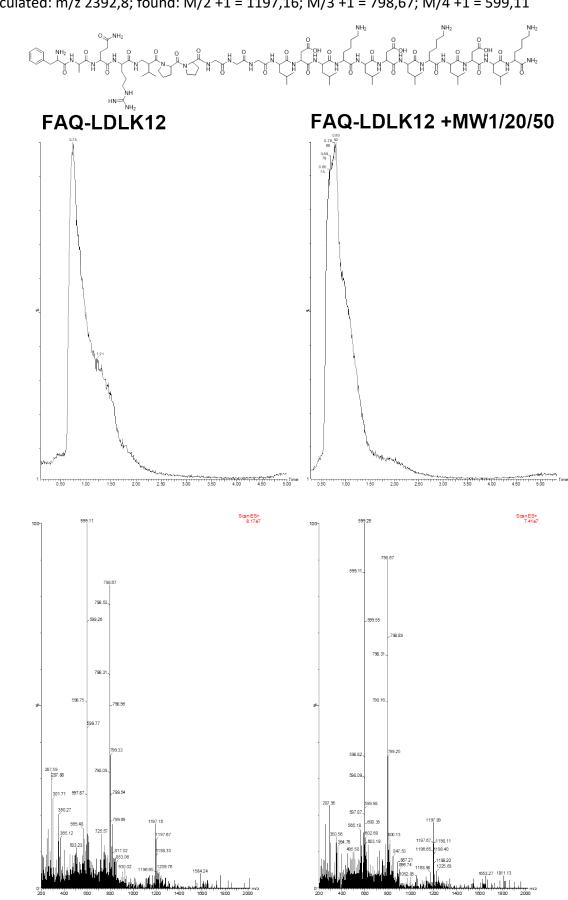

**Fig. S5.** Viscosity test of BM3 with and without MW treatment at 1 W, for 20 minutes and at a maximum temperature of 50 °C. The experiment was performed in a cone-plate geometry *via* continuous shear ramp.

**HYDROSAP** 

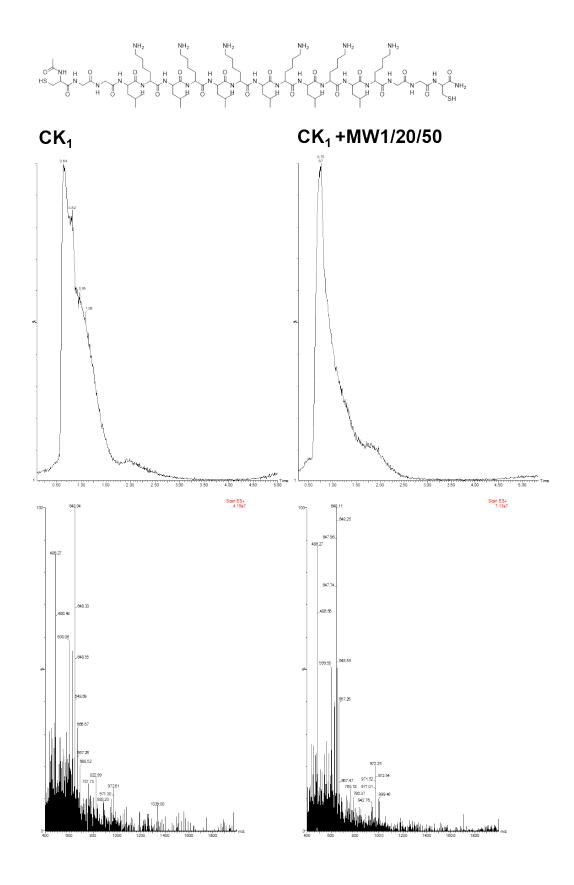



**Fig. S6.** Viscosity test of HYDROSAP with and without MW treatment at 1 W, for 20 minutes and at a maximum temperature of 50 °C. The experiment was performed in a cone-plate geometry *via* continuous shear ramp.

### BM3

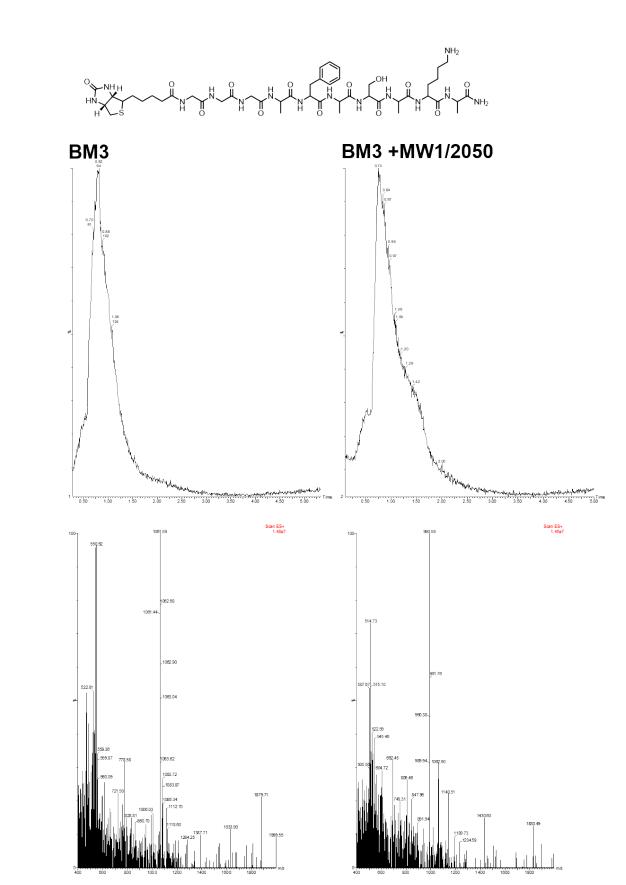



**Fig. S7.** Experimental deconvolution ATR-FTIR absorption spectra of LDLK12, FAQ-LDLK12, HYDROSAP, BM3,  $CK_1$  and Pal1 for Amide I. To resolve the overlapping bands, after a baseline correction, the peaks were detected using the respective second derivatives, followed by smoothing with the 7–9 point Savitsky–Golay function with polynomial order of 2. Peak fitting/deconvolution was then performed with a Voigt function using OriginPro software.


#### LDLK12



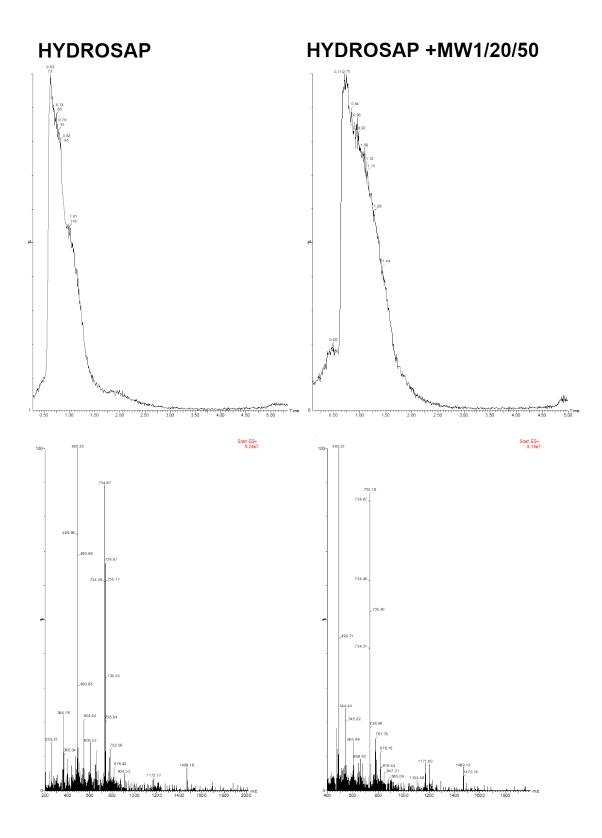
#### FAQ-LDLK12



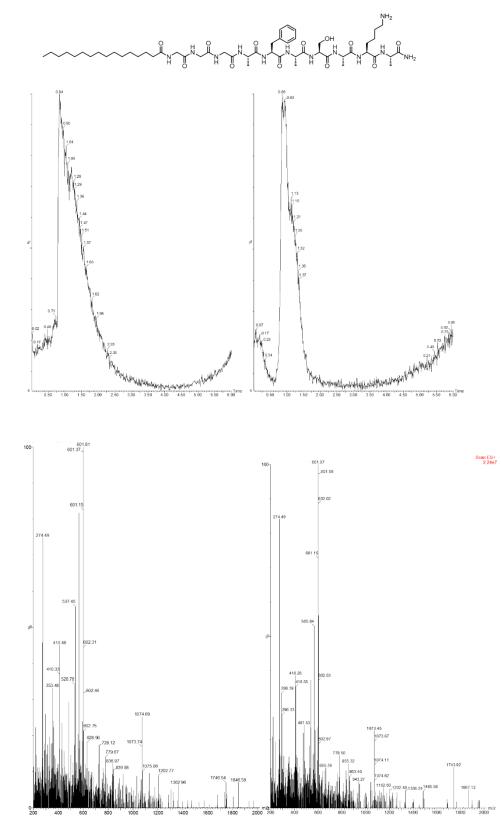

Calculated: m/z 2392,8; found: M/2 +1 = 1197,16; M/3 +1 = 798,67; M/4 +1 = 599,11



Calculated: m/z 1941,5; found: M/2 +1 = 972,61; M/3 +1 = 648,04

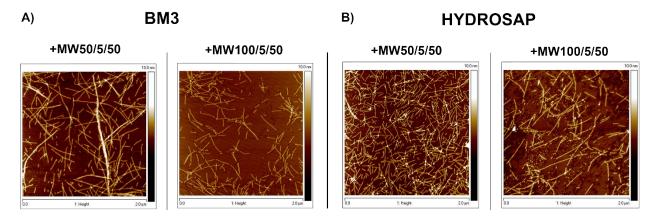

BM3



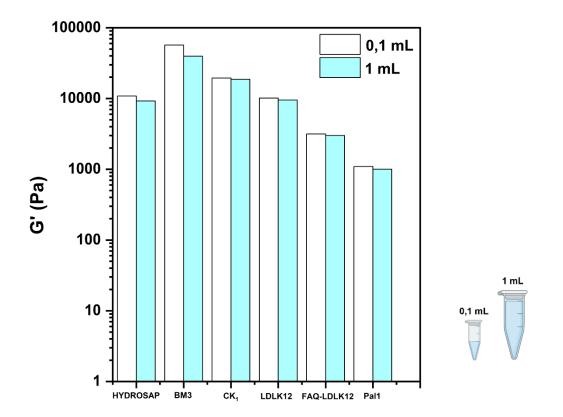

## Calculated: m/z 1061,2; found M +1 = 1062,68

#### HYDROSAP

Calculated: m/z 1467,7; found: M/2 +1 = 734,67




Pal1




Calculated: m/z 1072,7; found: M +1 = 1073,74; M/2 +1 = 537,45

**Fig. S8.** Structural formulas and ESI-MS analyses of SAPs before and after +MW1/20/50 treatment. LC-MS/MS showed no secondary reaction involving chemical cross-linking after MW treatment in all SAPs.



**Fig. S9.** AFM images of A) BM3 and B) HYDROSAP after or +MW100/5/50 treatments. Both peptides showed a stronger fiber fasciculation in the case of +MW50/5/50 treatment, while +MW100/5/50 caused partial defragmentation of nanofibers, likely because of high-power-induced SAP denaturation. These findings are in agreement with results reported in Fig. 1.



**Fig. S10.** Comparison between 100  $\mu$ L and 1 mL scale vials to investigate the mechanical properties. All SAPs presented in this study revealed a similar behaviour when treated in a bigger scale.

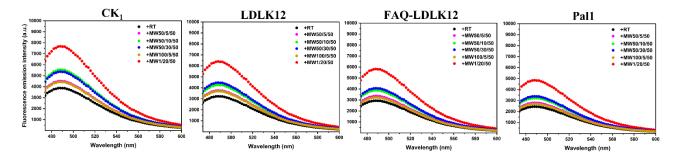
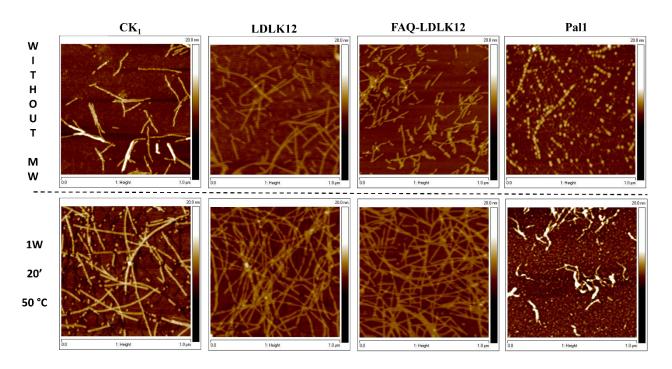




Fig. S11. ThT experiments to compare different MW protocols in the tested SAPs



**Fig. S12.** AFM images of LDLK12, FAQ-LDLK12, CK<sub>1</sub>, and Pal1, before and after MW treatment. All studied SAPs showed an increased population of fibers after treatment at 1 W, 20', 50 °C.



**Fig. S13.** Representative images (LIVE&DEAD viability assay) of hNSCs cultured for 7 days in vitro. hNSCs were seeded on HYDROSAP and BM3 at different conditions: +RT, +MW1/20/50, +RT, GP and +MW1/20/50, GP. hNSCs cultured on Cultrex and glass surface acted as positive and negative controls respectively. Live cells are stained in green and dead cells in red. Cell nuclei are visualized with HOECHST in blue. Scale bar 100 $\mu$ m.

| Peptide    | Conditions          | Acronym               | G' (Pa)     | G" (Pa)    |
|------------|---------------------|-----------------------|-------------|------------|
| BM3        | MW, 50W, 5', 50°C   | +MW50/5/50cp          | 9351 ± 454  | 720 ± 137  |
| BM3        | MW, 50W, 10', 50 °C | +MW50/10/50 <i>cp</i> | 26630 ± 980 | 2542 ± 52  |
| BM3        | MW, 50W, 30', 50 °C | +MW50/30/50 <i>cp</i> | 37553 ± 146 | 3104 ± 73  |
| ВМЗ        | MW, 50W, 60', 50 °C | +MW50/60/50 <i>cp</i> | 35231 ± 243 | 3002 ± 53  |
| вмз        | MW, 100W, 5', 50 °C | +MW100/5/50           | 6300 ± 115  | 674 ± 48   |
| HYDROSAP   | MW, 50W, 5', 50 °C  | +MW50/5/50cp          | 3386 ± 360  | 156 ± 15   |
| HYDROSAP   | MW, 50W, 10', 50 °C | +MW50/10/50cp         | 4643 ± 870  | 176 ± 20   |
| HYDROSAP   | MW, 50W, 30', 50 °C | +MW50/30/50 <i>cp</i> | 6384 ± 980  | 469 ± 36   |
| HYDROSAP   | MW, 50W, 60', 50 °C | +MW50/60/50 <i>cp</i> | 6479 ± 837  | 532 ± 78   |
| HYDROSAP   | MW, 100W, 5', 50 °C | +MW100/5/50           | 931 ± 70    | 61 ± 14    |
| LDLK12     | MW, 50W, 5', 50 °C  | +MW50/5/50cp          | 8334 ± 322  | 345 ± 69   |
| FAQ-LDLK12 | MW, 50W, 5', 50 °C  | +MW50/5/50cp          | 1136 ± 124  | 83 ± 22    |
| CK1        | MW, 50W, 5', 50 °C  | +MW50/5/50cp          | 12210 ± 632 | 1157 ± 110 |
| Pal1       | MW, 50W, 5', 50 °C  | +MW50/5/50cp          | 699 ± 73    | 73 ± 11    |

**Table S1.** Different MW irradiation protocols vs SAP mechanical properties after overnight incubation followed by gelation with DPBS.

| Peptide    | GP           | Conditions        | Acronym       | G' (Pa)      | G" (Pa)    | Max Strain<br>(%) |
|------------|--------------|-------------------|---------------|--------------|------------|-------------------|
| BM3        |              | MW, 50W, 5', 50°C | +MW/50/5/50pp | 9815 ± 475   | 882 ± 126  | 200-300           |
| ВМЗ        |              | MW, 1W, 20', 50°C | +MW1/20/50pp  | 25910 ± 811  | 1948 ± 236 | 300-400           |
| BM3        |              | Without MW, RT    | +RT <i>pp</i> | 8890 ± 360   | 695 ± 83   | 200-300           |
| BM3        | $\checkmark$ | MW, 50W, 5', 50°C | +MW/50/5/50pp | 25910 ± 811  | 1948 ± 236 | 500-600           |
| HYDROSAP   |              | MW, 50W, 5', 50°C | +MW/50/5/50pp | 17690 ± 618  | 733 ± 79   | 200-300           |
| HYDROSAP   |              | MW, 1W, 20', 50°C | +MW1/20/50pp  | 18500 ± 1130 | 824 ±83    | 200-300           |
| HYDROSAP   |              | Without MW, RT    | +RTpp         | 8553 ± 3825  | 457 ± 97   | 100-200           |
| HYDROSAP   | $\checkmark$ | MW, 50W, 5', 50°C | +MW/50/5/50pp | 47300 ± 1999 | 4392 ± 310 | 400-500           |
| LDLK12     |              | MW, 1W, 20', 50°C | +MW1/20/50pp  | 2499 ± 173   | 136 ± 11   | 200-300           |
| LDLK12     |              | Without MW, RT    | +RT <i>pp</i> | 1100 ± 141   | 55 ± 6     | 100-200           |
| FAQ-LDLK12 |              | MW, 1W, 20', 50°C | +MW1/20/50pp  | 1405 ± 123   | 171 ± 14   | 100-200           |
| FAQ-LDLK12 |              | Without MW, RT    | +RT <i>pp</i> | 652 ± 62     | 49 ± 5     | 50-100            |
| СК1        |              | MW, 1W, 20', 50°C | +MW1/20/50pp  | 20380 ± 796  | 1765 ± 75  | 600-700           |
| СК1        |              | Without MW, RT    | +RT <i>pp</i> | 11870 ± 478  | 811 ± 68   | 400-500           |
| Pal1       |              | MW, 1W, 20', 50°C | +MW1/20/50pp  | 899 ± 41     | 56 ± 12    | 100-200           |
| Pal1       |              | Without MW, RT    | +RTpp         | 152 ± 37     | 34 ± 9     | 50-100            |

**Table S2.** Assessment of the max strain (%) calculated after multiple cycles of strain-sweep tests with incremented maximum strains. Acronyms: overnight incubation (+); MW-treated SAPs or untreated ones (RT); power intensity; time of MW treatments; maximum temperature allowed for the sample; type of geometry used for rheological measurements (*pp*, parallel-plate). Working concentrations are respectively: BM3 2% w/v; HYDROSAP 1% w/v; LDLK12 1% w/v; FAQLDLK 2% w/v; CK<sub>1</sub>5% w/v; Pal1 2% w/v.

| Peptide    | % w/v | Conditions     | Acronym | G' (Pa)                      | G" (Pa)                     |
|------------|-------|----------------|---------|------------------------------|-----------------------------|
| ВМЗ        | 2%    | without MW, RT | -RTcp   | $285\pm23$                   | $74\pm9$                    |
| HYDROSAP   | 1%    | without MW, RT | -RTcp   | $633 \pm 14$                 | $82\pm 6$                   |
| LDLK12     | 1%    | without MW, RT | -RTcp   | $446\pm95$                   | $93\pm12$                   |
| FAQ-LDLK12 | 2%    | without MW, RT | -RTcp   | $225\pm84$                   | $\textbf{31}\pm\textbf{10}$ |
| СК1        | 5%    | without MW, RT | -RTcp   | $\textbf{129}\pm\textbf{18}$ | $22\pm12$                   |
| Pal1       | 2%    | without MW, RT | -RTcp   | $85\pm13$                    | $\textbf{18}\pm\textbf{7}$  |

**Table S3.** Rheological characterization of SAPs with no MW treatment and without overnight incubation was analysed after a 3 hours time-sweep experiment in presence of Dulbecco's phosphate buffer saline solution (DPBS 1X). As discussed in the main text, the use of these SAPs immediately after dissolution in water is disadvantageous in terms of overall scaffold mechanical properties.

| Peptide         | GP           | Treatment  | Wavenumber (cm <sup>-1</sup> ) | % β-sheets secondary structure component |
|-----------------|--------------|------------|--------------------------------|------------------------------------------|
| LDLK12          |              | +RT        | 1616, 1692                     | 80                                       |
| LDLK12          |              | +MW1/20/50 | 1616, 1692                     | 95                                       |
| FAQ-LDLK12      |              | +RT        | 1617, 1692                     | 59                                       |
| FAQ-LDLK12      |              | +MW1/20/50 | 1618, 1693                     | 78                                       |
| HYDROSAP        |              | +RT        | 1618, 1693                     | 67                                       |
| HYDROSAP        |              | +MW1/20/50 | 1618, 1693                     | 82                                       |
| BM3             |              | +RT        | 1623, 1700                     | 72                                       |
| BM3             |              | +MW1/20/50 | 1623, 1631, 1699               | 92                                       |
| CK <sub>1</sub> |              | +RT        | 1617, 1693                     | 77                                       |
| CK <sub>1</sub> |              | +MW1/20/50 | 1618, 1694                     | 91                                       |
| Pal1            |              | +RT        | 1617, 1692                     | 49                                       |
| Pal1            |              | +MW1/20/50 | 1618, 1693                     | 65                                       |
| LDLK12          | $\checkmark$ | +RT        | 1622, 1645, 1692               | 85                                       |
| LDLK12          | $\checkmark$ | +MW1/20/50 | 1622, 1645, 1692               | 97                                       |
| FAQ-LDLK12      | $\checkmark$ | +RT        | 1622, 1645, 1692               | 65                                       |
| FAQ-LDLK12      | $\checkmark$ | +MW1/20/50 | 1622, 1645, 1692               | 81                                       |
| HYDROSAP        | $\checkmark$ | +RT        | 1621, 1693                     | 75                                       |
| HYDROSAP        | $\checkmark$ | +MW1/20/50 | 1621, 1693                     | 89                                       |
| BM3             | $\checkmark$ | +RT        | 1623, 1645, 1694               | 80                                       |
| BM3             | $\checkmark$ | +MW1/20/50 | 1623, 1645, 1693               | 97                                       |
| CK <sub>1</sub> | $\checkmark$ | +RT        | 1622, 1693                     | 82                                       |
| CK <sub>1</sub> | $\checkmark$ | +MW1/20/50 | 1622, 1694                     | 94                                       |
| Pal1            | $\checkmark$ | +RT        | 1622, 1645, 1692               | 65                                       |
| Pal1            | $\checkmark$ | +MW1/20/50 | 1622, 1645, 1692               | 77                                       |

**Table S4.** Peaks analysis in the Amide I band and quantification of percentage of  $\beta$ -sheets secondary structures from ATR-FTIR-deconvolved spectra of LDLK12, FAQ-LDLK12, HYDROSAP, BM3, Pal1 and CK<sub>1</sub>. Relative abundance of  $\beta$ -sheets was calculated after elimination of spectral noise and normalization of the deconvoluted individual peak area with the total amide I peak area, followed by multiplication by 100.

| Peptide    | GP           | Treatment  | % free primary amino groups |
|------------|--------------|------------|-----------------------------|
| LDLK12     | $\checkmark$ | +RT        | 38                          |
| LDLK12     | $\checkmark$ | +MW1/20/50 | 31                          |
| FAQ-LDLK12 | $\checkmark$ | +RT        | 35                          |
| FAQ-LDLK12 | $\checkmark$ | +MW1/20/50 | 26                          |
| HYDROSAP   | $\checkmark$ | +RT        | 36                          |
| HYDROSAP   | $\checkmark$ | +MW1/20/50 | 24                          |
| BM3        | $\checkmark$ | +RT        | 25                          |
| BM3        | $\checkmark$ | +MW1/20/50 | 18                          |
| CK1        | $\checkmark$ | +RT        | 41                          |
| CK1        | $\checkmark$ | +MW1/20/50 | 33                          |
| Pal1       | √            | +RT        | 39                          |
| Pal1       | √            | +MW1/20/50 | 30                          |

**Table S5.** Quantification of free amino groups of Genipin cross-linked scaffolds *via* TNBSA assay. All experiments showed a decreased percentage of free amines in samples pre-treated with microwaves.

#### Supplementary method

**2,4,6-Trinitrobenzene Sulfonic Acid (TNBSA) Assay:** TNBSA was used to indirectly quantify the degree of the cross-linking, calculated by estimating the free amino groups (lysine residues) present after Genipin cross-linking reaction. TNBSA solution in 0.1 M aqueous buffer at pH 8.5 was added to GP cross-linked samples and stirred for 24 h at 37 °C. The reaction mixture was quenched with a solution of 1 N HCl. The measurements were carried out in 1 cm path length micro-fluorescence cell, and the absorbance was quantitied at 335 nm using an Infinite M200 Pro plate reader (Tecan).