Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2023

Electronic Supplementary Information: Tuning the chemical composition of binary alloy nanoparticles to prevent their dissolution

Luis A. Cipriano,*^a Henrik H. Kristoffersen,^a Renan Lopes Munhos,^b Rebecca Pittkowski,^a Matthias Arenz*^{a,b} and Jan Rossmeisl^a

^aDepartment of Chemistry, Center for High Entropy Alloy Catalysis, University of Copenhagen, 2100 Copenhagen, Denmark

^bDepartment for Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland

Section S1. Equations to calculate the dissolution percentage and the percentage of A atoms at the surface of the nanoparticles post-dissolution process (Pd atoms at the surface).

For each nanoparticle, nine molar fractions of protective material have been considered and 500 random structures were generated for each molar fraction, with a total of 4500 structures per nanoparticle.

Dissolution % = 100 -
$$\left(\frac{\frac{1}{500}\sum_{i=1}^{500}X_{i}}{N_{Atoms}} \times 100\right)$$

Where X_i corresponds to the number of remaining atoms in the nanoparticle and N_{Atoms} to the number of atoms in the nanoparticle previous dissolution.

$$Pd \ at \ the \ surface \ \% = \frac{\frac{1}{500} \sum_{i=1}^{500} A^{Surf}_{i}}{\frac{1}{500} \sum_{i=1}^{500} A^{Surf}_{i} + B^{Surf}_{i}} \times 100$$

Where A^{Surf}_{i} corresponds to the number of Pd atoms at the surface of the nanoparticle (exposed atoms with coordination number ≤ 11) and $A^{Surf}_{i} + B^{Surf}_{i}$ to the total number of atoms at the surface of the nanoparticle (Pd and Au atoms).

Section S2. Modeling nanoparticles with three exposed facets: (100), (110), and (111)

To assess the effect of the number of exposed crystallographic facets on the dissolution process, we have considered the following nanoparticles: a) 2.20nm, b) 2.48nm, c) 3.17nm, and d) 4.14nm. The shape of each NP is shown in Fig. S1.

Fig. S1 Nanoparticles with three exposed facets: (100), (110), and (111). Color coding in the nanoparticles shows the number of neighboring atoms that each atom has. Red, blue, and green balls also represent the (100), (110), and (111) facets.

Fig. S2 Mean values of the dissolution percentage on nanoparticles as a function of the gold molar fraction. (a) NPs of 2.20nm, (b) NPs of 2.48 nm, (c) NPs of 3.17nm, and (d) NPs of 4.14nm. The dark blue and yellow balls represent the palladium and gold atoms, respectively.

Fig. S3 Mean values of the percentage of Pd atoms at the surface of the nanoparticles post-dissolution process as a function of the gold molar fractions. (a) NPs of 2.20nm, (b) NPs of 2.48nm, (c) NPs of 3.17nm, and (d) NPs of 4.14nm.

Section S3. Standard electrode potential at 298.15 K (25°C) and 0.1 MPa (1 bar) – 1M HCl

The standard electrode potentials vs SHE for Au and Pd ions under HCl electrolyte

have been calculated through the standard Gibbs free energy of formation ($G_{\rm f}^{\circ}$) as follows:

$$E^{\circ} = \frac{\sum \Delta G_{left} - \sum \Delta G_{right}}{nF}$$

Table S1 Standard electrode potentials vs SHE for Au and Pd ions under HCl electrolyte, the standard Gibbs free energy of formation (G_f°) were taken from the NBS tables of chemical thermodynamic properties: Selected values for inorganic and C and C2 organic substances in SI units.¹

Element	Half-reaction				E° / V vs SHE	
Cl	Cl ₂ (g)	+ 2e-	≓	2Cl ⁻		1.36
ΔG_f° (kJ/mol)	0	0		-131.23		
Au	Au(s)	+ 4Cl ⁻	≓	AuCl ₄ -	+ 3e-	1.00
ΔG_f° (kJ/mol)	0	4*-131.23		-235.14	0	
Pd	Pd(s)	+ 4Cl-	⇒	PdCl ₄ ²⁻	+ 2e-	0.56
ΔG_f° (kJ/mol)	0	4*-131.23		-417.10	0	

Section S4. Surface cohesive energy of kink atoms in pure metal surfaces

As mentioned in the main text, kink atoms are special atoms because their remotion leaves the same surface behind, Fig S4 shows the side and top view of a kink surface.

Fig. S4 Side and top view of the kink surface. The gray ball highlights the kink atom.

The surface cohesive energy for the remotion of kink atoms from the kink surfaces was calculated as follows and the results are reported in Table S2:

$$E_{kink} = E_{M}^{kink} - E_{M}^{not - kink}$$

Where E_{M}^{kink} is the kink surface energy for each metal and $E_{M}^{not-kink}$ is the energy of the same

kink surface without the kink atom (M = Au or Pd).

Table S2 Optimized bulk lattice parameter for each metal (a, in Å) and its corresponding energy (E_{bulk} , in eV), and the energy of removing a kink atom from the kink surface (E_{kink} , in eV).

М	а	E _{Bulk}	E _{Kink}
Au	4.2097	-2.56	-2.58
Pd	3.9627	-3.22	-3.22

Section S5. Initial cyclic voltammetry of pure Pd, $Au_{0.20}Pd_{0.80}$, and $Au_{0.40}Pd_{0.60}$ nanoparticles immobilized on a GC disk RDE.

Fig. S5 Initial cyclic voltammograms of pure Pd, $Au_{0.20}Pd_{0.80}$, and $Au_{0.40}Pd_{0.60}$ nanoparticles immobilized on a GC disk of an RDE. The CVs were recorded at room temperature with 5 mV s⁻¹ in 1 M HCl aqueous electrolyte. RHE and Glassy Carbon electrodes were used as reference and counter electrodes, respectively.

Section S6. Scanning Electron Microscopy (SEM) coupled to Energy Dispersive X-Ray (EDX) analysis of Pd, $Au_{0.20}Pd_{0.80}$, and $Au_{0.40}Pd_{0.60}$ nanoparticles.

For the SEM-EDX analysis, a layer of nanoparticles was deposited onto a graphite surface glued with double-sided carbon tape on a stainless-steel holder. The analyses were performed with a Zeiss Gemini 450 SEM equipped with a X-max 150 EDX detector by Oxford Instruments.

Fig. S6a I. Representative SEM image of Pd nanoparticles acquired at 20kV, 200 pA, 10,000x magnification with Back Scattering Detector. II. Representative EDX spectrum taken at the point named "Spektrum 1", where particle agglomeration was observed.

11 spectra were acquired at 10k x, 20k x, and 50k x magnification. All quantified 100%

Palladium.

Fig. S6b I. Representative SEM image of $Au_{20}Pd_{80}$ nanoparticles acquired at 20kV, 200 pA, 20,000x magnification with Back Scattering Detector. **II**. Representative EDX spectrum taken at the point named "Spektrum 24". The determined atomic percentage (At %) of $Au_{20}Pd_{80}$ was 80% Pd and 20% Au.

14 spectra were measured at 10k x, 20k x, and 50k x magnification. The results are shown in **Table S3b1** and summarized as the minimum, maximum, average, and standard deviation in **Table S212**

Table S3b2.

Name of the Spectrum	Pd (%)	Au (%)	Sum (%)
Spektrum 12	80.69	19.31	100.00
Spektrum 15	80.98	19.02	100.00
Spektrum 17	80.72	19.28	100.00
Spektrum 18	80.41	19.59	100.00
Spektrum 19	80.32	19.68	100.00
Spektrum 20	80.37	19.63	100.00
Spektrum 21	80.47	19.53	100.00
Spektrum 22	79.97	20.03	100.00
Spektrum 23	80.28	19.72	100.00
Spektrum 24	79.97	20.03	100.00
Spektrum 25	80.56	19.44	100.00
Spektrum 26	80.55	19.45	100.00
Spektrum 27	80.42	19.58	100.00
Spektrum 28	80.09	19.91	100.00

Table S3b1 EDX quantification of the atomic composition of $Au_{20}Pd_{80}$ nanoparticles.

Table S3b2 Summary of EDX quantification in Table S6b1.

Statistic	Pd (%)	Au (%)
Maximum	80.98	20.03
Minimum	79.97	19.02
Average	80.41	19.59
Standard deviation	0.29	0.29

Fig. S6c I. Representative SEM image of $Au_{40}Pd_{60}$ nanoparticles acquired at 20kV, 200 pA, 20,000x magnification with Back Scattering Detector. **II.** Representative EDX spectrum taken at the point named "Spektrum 34". The determined atomic percentage (At%) of $Au_{40}Pd_{60}$ was 61.7% Pd and 38% Au.

12 spectra were measured at 10k x, 20k x, and 50k x magnification. The results are shown in **Table S3c1** and summarized as minimum, maximum, average, and standard deviation, in **Table S3c2**.

Name of the Spectrum	Pd (%)	Au (%)	Summatory (%)
Snektrum 29	62 30	37.70	100.00
Spektrum 30	63 34	36.66	100.00
Spektrum 50	03.J T	25.00	100.00
Spektrum 51	04.13	33.87	100.00
Spektrum 32	63.45	36.55	100.00
Spektrum 33	64.13	35.87	100.00
Spektrum 34	61.69	38.31	100.00
Spektrum 35	62.82	37.18	100.00
Spektrum 36	63.08	36.92	100.00
Spektrum 37	64.62	35.38	100.00
Spektrum 38	63.66	36.34	100.00
Spektrum 39	63.35	36.65	100.00
Spektrum 40	64.40	35.60	100.00

Table S3c1 EDX quantification of the atomic composition of $Au_{40}Pd_{60}$ nanoparticles.

 Table S3c2
 Summary of EDX quantification in Table S6c1.

Statistic	Pd (%)	Au (%)
Maximum	64.62	38.31
Minimum	61.69	35.38
Average	63.41	36.59
Standard deviation	0.86	0.86

Fig. S7 ICP-MS concentration of Au and Pd found in the electrolyte after triangular perturbation of the potential between $0.00V_{RHE}$ and $0.650V_{RHE}$ with 30 cycles. The concentrations are expressed in Parts Per Billion (ppb) which is equivalent to $\mu g.L^{-1}$.

Section S8. The use of the H_{UPD} charge to probe the active surface area is rationalized in Fig. S8 below.

The CO-stripping measurement was performed with $Au_{0.20}Pd_{0.80}$ as catalyst in 0.1M HClO₄ (70% pure, Sigma-Aldrich) supporting electrolyte. From the calculated charges shown in **Fig. S8**, the CO (CarbaGas/Air Liquide, Switzerland) oxidation charge represents almost twice the H_{UPD} charge. Considering that hydrogen oxidation is a one electron process, while two electrons are required to oxidize CO, CO stripping leads to the same active surface area as H_{UPD} indicating a minor effect of the ligand effect on weakly adsorbing hydrogen (as compared

to the more strongly adsorbing CO molecule). The E vs. i transients were acquired between 0.1 V_{RHE} and 1.3 V_{RHE} at scan rate 20 mV s⁻¹.

Fig. S8 E vs. i transients acquired for $Au_{0.20}Pd_{0.80}$ catalyst in 0.1 M aqueous HClO₄ at room temperature and scan rate of 20 mV s⁻¹.

Section S9. Structural determination of Pd, Au_{0.20}Pd_{0.80}, and Au_{0.40}Pd_{0.60} NPs by High Resolution Transmission Electron Microscopy (HR-TEM) and X-ray Diffraction (XRD).

The orientation of the exposed crystal faces was calculated from the FTT images shown below for each particle. The lattice parameter was calculated, and the faces were defined from the tables available in software XPert-Highscore version of 2008.

Fig. S9a i. HR-TEM micrograph of pure Pd NPs. ii. FTT of i, the exposed crystal orientations calculated from the FTT of i were Pd(111) and Pd(002).

Fig. S9b *i*. HR-TEM micrograph of pure $Au_{0.20}Pd_{0.80}$ NPs. *ii*. FTT of *i*, the exposed crystal orientations calculated from the FFT of *i* were (111) and (002).

Fig. S9c i. HR-TEM micrograph of $Au_{0.40}Pd_{0.60}NPs$. *ii. FTT* of *i*, the exposed crystal orientations calculated from the FTT of *i* were (111), (002), and (022).

Fig. S9d Overview of the X-ray diffraction pattern collected for the different Pd-based particles, the diffraction patterns are plotted with a reference of bulk fcc Pd metal (lattice parameter a=3.89 Å). All Bragg peaks in the diffraction pattern of the experimental samples correspond to the ones expected for a fcc structure.

Fig. S9e Zoom on the (111) and (200) reflections of the collected X-ray diffraction patterns (Fig. S9d). The position of Bragg peaks and with that the lattice parameter shifts based on the respective Pd/Au ratio of the samples, agreeing with the single-phase solid solution behavior of the PdAu alloys.

Fig. S9f Plot of the lattice parameters a, determined from the X-ray diffraction patterns of the three Pd-based samples, as a function of Pd content. The experimental lattice parameters a are well correlated with the expected lattice parameters which correspond to the nominal composition of PdAu alloys based on Vegard's law. The literature references for the fcc lattice parameters of Pd and Au are 3.89Å and 4.08 Å, respectively.²

Table S4. Refined parameters obtained from Rietveld refinements by fitting an fcc model to the collected X-diffraction data

Sample	a (Å)	Size (µm)	Scale	Uiso (Å ²)	wR (%)
Pd	3.8901(1)	1.15(3)	0.9701	0.006(1)	2.71
Au _{0.20} Pd _{0.80}	3.9309(9)	0.05(3)	0.9846	0.007(3)	2.67
Au _{0.40} Pd _{0.60}	3.9646(2)	0.10(8)	0.9251	0.007(1)	1.98

References

D. D. Wagman, W. H. Evans, V. B. Parker, R. H. Schumm, I. Halow, S. M. Bailey, K. L.
 Churney and R. L. Nuttall, *J. Phys. Chem. Ref. Data*, 1982, 11, 1–392.

Wyckoff R W G. "Cubic closest packed, ccp, structure "Crystal Structures 1 (1963) 783. Second edition. Interscience Publishers, New York, New York.