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Figure S1. TEM micrographs of a) NaGdF4:Er3*, Yb3* (core nanoparticles) b) NaGdF4:Er3*, Yb3*/
NaGdFs: Yb3* (active core/active shell nanoparticles) with insets of their respective size
distribution. c) Experimental XRD patterns of NaGdF4:Er3*, Yb3* (green) NaGdF4:Er3*, Yb3*/
NaGdF4: Yb3* (red) with a simulated line pattern for hexagonal phase NaGdF4 (bottom plot) is
shown for reference (black). d) Upconversion emission spectra of the 2 mg/ml NaGdFa:Er3*,
Yb3* (green) and NaGdF4:Er3*, Yb3*/ NaGdFa: Yb3* (red) at 976 nm excitation.
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Figure S2. (a) Absorbance and (b) emission spectra of the synthesized IR820-COOH and IR820-
APTMS, their comparison with IR820 dye (0.1 mg/ml in methanol).
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Figure S3. 'H NMR spectra of IR820-COOH (top) and IR820-APTMS (bottom) in DMSO-d6
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Figure S4. MALDI-TOF analysis of IR820-CONH-APTMS (MW 1106.41, top) and IR820 COOH
(MW=946.44, bottom).



Table S1. Absorbance maximum, emission maximum, and molar extinction coefficients for IR820,
IR820-COOH, and IR820-APTMS dyes in methanol

Absorbance Emission Extinction Coefficient
NIR Dye . . K P
maximum (nm) maximum (nm) (M*cm™)
IR820 820 850 198181.12
IR820-COOH 845 920 175625.58
IR820-CONH-APTMS 848 922 152256.89

Table S2. Moles of IR820-COOH dye, EDC and NHS were added to link different numbers of dye
molecules in the SL system.

IR820-COOH EDC NHS
(nmol) (nmol) (nmol)
10 10 25
20 20 50
28 28 70
34 34 85
42 42 105
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Figure S5. FTIR of NH: functionalized silica coated active-core/active-shell NPs (black) and
IR820-COOH linked with amide coupling on the surface of the silica coated active-core/active-
shell NPs (red).
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Figure S6. (a) UV-Vis absorption spectra for IR820-COOH dye molecules linked in SL system (b)
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Figure S7. (a) UV-Vis absorption spectra for IR820-APTMS dye molecules embedded in SE
system (b) UV-vis calibration curve to quantify the number of dye molecules



Figure S8. TEM micrograph of SE systems having varied amounts of dye embedded in the silica
matrix with a thickness of a) 4 nmol dye, 4.2+1.2 nm b) 12 nmol dye, 4.0+0.7 nm c) 16 nmol
dye, 4.5+1.5 nm d) 25 nmol dye, 5.2+1.0 nm. Amounts of dye correspond to those in Table S2.



Figure S9. Photographs of 5 mg/mL solution in methanol of the (left) SL system and (right) SE
system, under 808 nm irradiation.
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Figure S10. Absorbance as a function of incubation time for SE (black), SL (red) and electrostatic

(blue) system to monitor leaking of dye from the nanoparticle surface. All samples are 5 mg/mL
nanoparticles in methanol.

Table S3. Moles of IR820-CONH-APTMS dye and TEOS added to embed different numbers of dye
molecules in the SE system.

IR820-CONH-APTMS TEOS
(nmol) (nmol)

4 26

12 18

16 14

20 10

25 5
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Figure S11. a) Comparison of UCL spectra of SL (green) SE (blue) and the electrostatic system
(grey) with the dye coordinated to the oleate-free nanoparticle surface upon 808 nm excitation
b) Overall emission intensities of SL (green), SE (blue) and electrostatic system (grey) as a
function of irradiation time upon 808 nm excitation.
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Figure S12. TEM micrographs of core, core/shell and core/shell/shell respectively for (a)
NaGdF4:Er*, Yb3*/NaGdFs:Yb3*/ NaGdF4:10%Nd3* (black), NaGdFa:Er3*, Yb/NaGdF4:Yb3*/
NaGdF4:15%Nd>* (red), NaGdF4:Er, 3* Yb3*/NaGdF4:Yb3*/ NaGdF4:20%Nd3* (green).
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Figure S13. XRD patterns of (a) NaGdF4:Er3*, Yb3* (cores), (b) NaGdF4:Er3*, Yb3*/ NaGdF4: Yb3*
(core/shell), (c) NaGdF4:Er3*, Yb3*/ NaGdFs: Yb3*/ NaGdFs: x%Nd3* (core/shell/shell), for 10%
(black), 15% (red), 20% (green) Nd3*-doped batches.
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Figure S14. UCL spectra under 976 nm excitation of the (a) core and (b) core/shell nanoparticles
isolated during the synthesis of (c) core/shell/shell LnUCNPs having 10 (red traces), 15 (blue
traces) or 20 (green traces) mol% Nd3*in the outer shell or the core and core/shell samples taken
during the synthesis of the SE system (black). An aliquot of the cores and core/shells during the
synthesis of the final product was taken and purified to obtain these spectra at 2 mg/mL
nanoparticles dispersed in hexanes.
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Figure S15. Normalized UCL spectra under 808 nm excitation for a) (core/shell/shell)
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Figure S16. Upconversion lifetimes of the *Fg/2 = “l15/2 transition of Er3* in (a) the SE system
(C/S/Si02-Dye, filled) and  NaGdF:Yb3*,Er3*/NaGdFs:Yb3* LnUCNPs coated with
unfunctionalized  silica  (C/S/Si0O2, outlined) under 808 nm excitation. (b)
NaGdF4:Yb3*,Er3*/NaGdF4:Yb3*/NaGdF4:15% Nd3* LnUCNPs (C/S/NaGdF4:Nd>*, filled circles) and
NaGdF4:Yb3*,Er¥*/NaGdF4:Yb3*/NaGdF4 LnUCNPs (C/S/NaGdF,, outlined circles) under 976 nm
excitation.
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Figure S17. (a) TEM micrograph with the corresponding inset of the size distribution (15.5 £ 5.7
nm), (b) Experimental XRD (red) and JCPDS 84-0307 reference pattern (black) of hematite (a-
Fe»0s3) nanoparticles.
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Figure S18. (a) Calibration curve generated from absorption spectra of dispersions of hematite
nanoparticles in ethanol. (b) Absorbance spectrum both used for quantification of the hematite
nanoparticles inserted into the pores of the SE-WP nanoparticles (2 mg/mL in methanol).
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Figure $19. Electron paramagnetic resonance spectra of the SE-WP-Fe, SE, Fe,03 with and
without H,0, (red and blue, respectively) with DMPO spin trapping agent with and
without 800 nm excitation. All spectra were recorded using 2 mg/mL nanoparticles in
methanol.



Table S4. Electron paramagnetic resonance (EPR) data corresponding to the spectra presented
in Figure S19. All samples were recorded in methanol (2 mg/mL dispersions) at room

temperature.
Sample H20; 808 nm aN aH aH2 aN/aH Assignment!
DMPO (-) (-) -- - -- N/A
DMPO (+) (-) - - -- N/A
DMPO (-) (+) - - - N/A
DMPO (+) (+) 13.8 11.1 1.2 1.24 DMPO-OOH
(superoxide)
DMPO-X
Fe 03 (-) 532 nm 13 12.2 -- 1.09 (degradation)
Fe,0;3 (-) (-) 13.1 10.3 -- 1.27 DMPO-OH
Fe203 (+) (-) - - -
Fe,03 () (+) 13.1 10.3 - 1.27 DMPO-OH
Fe 03 (+) (+) 13.3 9.9 -- 1.34
SE system (-) (-) -- - --
SE system (+) (-) 13.5 10.9 - 1.23 DMPO-OOH
(superoxide
SE system (-) (+) - -- -
DMPO-OOH
SE system (+) (+) 13.5 10.9 1.23 (superoxide)
SE-WP-Fe
0.50 ) ) N N - N
SE-WP-Fe
0.50 *) ) - N a N
SE'O\A;F(’)'Fe (-) (+) 13.7 9.8 0.7 1.39 DMPO-OH
SE-WP-Fe (-) (+) 13.9 6.7 - 2.07 | DMPO-CHsO
0.50
SE-WP-Fe (-) (+) 12.9 9.75 - 1.32 DMPO-OH
0.50
SE'OV\Q;'FQ (+) (+) 13.8 11.2 1.2 1.23 DMPO-OOH
SE-WP-Fe (+) (+) 12.9 9.9 ~ 1.30 DMPO-OH
0.50
SE-WP-Fe DMPO-X
0.50 (+) (+) 13.9 14.6 -- 0.95 (degradation)
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Figure S20. Emission intensity of the 2H11/2 = %1152 transition of Er3* in the SE-

WP-Fe:0.50 system (2 mg/mL dispersion in methanol) as a function of irradiation
time (800 nm excitation) in the presence and absence of H;0..
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