Supporting Information

Synergistic Photothermal Conversion and Photocatalysis in 2D/2D

MXene/Bi₂S₃ Hybrids for Efficient Solar-Driven Water Purification

Yang Liu^a, Shu-Zhou Qu^a, Ze-Run Zhou^a, Xiang-Ping Song^c, Liang Ma^a*, Si-Jing Ding^b, Ou-Quan Wang^d*

^a Hubei Key Laboratory of Optical Information and Pattern Recognition, Wuhan Institute of Technology, Wuhan, 430205, P. R. China.

^b School of Mathematics and Physics, China University of Geosciences (Wuhan), Wuhan, 430074, P. R. China.

^c Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410078, China

^d School of Science, Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, P. R. China.

Figure S1. XPS survey of MXene/Bi₂S₃ hybrids.

Figure S2. Photocurrent densities of Bi_2S_3 and $MXene/Bi_2S_3$ electrodes under light irradiation. In the measurements, Pt electrode and AgCl electrode were used as counter electrode and reference electrode, Na_2SO_4 (1 M) was used as electrolyte.

Figure S3. Optical images of MXene/Bi₂S₃ hybrids observed on top view (a) and side view

Figure S4. Photographs of MXene/Bi₂S₃ membrane soaking in water for 48 h.

Figure S5. Absorption spectra of wet and dry MXene/Bi₂S₃ membranes.

Figure S6. Equivalent vaporization enthalpy of Bi₂S₃, MXene, and MXene/Bi₂S₃ membranes. The calculation is based on the formula $\Delta H_0 m_0 = \Delta H_{equ} m_g$, where ΔH_0 is the evaporation enthalpy of pure water, m_0 is the spontaneous evaporation rate of water in dark, m_g is spontaneous evaporation rate of membrane, ΔH_{equ} is the equivalent vaporization enthalpy.

Figure S7. Mass change of water in the presence of MXene/Bi₂S₃ membrane under sunlight irradiation with different intensities.

Figure S8. Evaporation rates of $MXene/Bi_2S_3$ membrane measured in MB, RhB, and CV solution.

Figure S9. Temperature variation curves (a) under an 808 nm laser irradiation and

photocatalytic degradation of MB (b) in the presences of $MXene/Bi_2S_3$ with different mass ratios.

Figure S10. Time-dependent extinction spectra of MB in the presences of Bi_2S_3 (a), MXene (b), and MXene/ Bi_2S_3 (c). (d) The comparison of adsorption abilities of Bi_2S_3 , MXene, and MXene/ Bi_2S_3 .

Figure S11. The photocatalytic degradation of MB of $MXene/Bi_2S_3$ measured at different temperature controlled by cooling water.

Materials	Excitation	PCE	Reference
	wavelength		
MXene/Bi ₂ S ₃	808 nm	45.1%	This work
Au@Bi ₂ S ₃	808 nm	35.3%	31
$Cu_{1.94}S/Bi_2S_3$	808 nm	33.2%	32
Bi ₂ S ₃ /Cu ₂ S/Cu ₃ BiS ₃	808 nm	43.8%	33
BiOI@Bi ₂ S ₃	808 nm	28.5%	34
Bi_2S_3/FeS_2	808 nm	38.7%	35

Table S1. Comparison of the photothermal conversion efficiency (PCE) of some typicalhybrids reported in previous work.

Materials	Solar vapor	Reference				
	generation (kg m ⁻² h ⁻					
	1)					
MXene/Bi ₂ S ₃	1.77	This work				
MXene/CuInSe	1.43	36				
MXene/Cu ₃ BiS ₃	1.32	37				
Pd-Bi ₂ S ₃	1.61	38				
Borophene/CNF	1.45	39				
Au@Bi2MoO6-CDs	1.69	40				
MXene/rGO	1.33	41				

Table S2.	Comparison	of the evaporation	rate of some	typical	membranes.