
SUPPLEMENTAL INFORMATION

Numerical simulations of harmonic magnetizations

We considered spherical single-domain particles whose dynamics in a liquid suspension are 

dominated by Brownian rotational relaxation. In this case, the behavior of magnetic fluids can be 

described by the Fokker-Planck equation1:
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where  is the angle of the magnetic moment  with respect to the excitation field of 𝜃 𝑚

,  is the distribution function of ,  is the ratio 𝐻(𝑡) = 𝐻0cos 𝜔𝑡 𝑊(𝜃,𝑡) 𝑚
𝜉(𝑡) =

𝜇0𝑚𝐻(𝑡)

𝑘𝐵𝑇
= 𝜉0cos 𝜔𝑡

of excitation field energy to the thermal energy,  is the Boltzmann constant, and  is the absolute 𝑘𝐵 𝑇

temperature.

We expand  into spherical harmonics as𝑊(𝜃,𝑡)

𝑊(𝜃,𝑡) =
∞

∑
𝑛 = 0

𝑎𝑛(𝑡)𝑃𝑛(cos 𝜃). #(𝑆2)

Where  are the Legendre polynomials and  are time-dependent coefficients for each 𝑃𝑛(cos 𝜃) 𝑎𝑛(𝑡)

spherical harmonic. Using some recurrence relations and the orthogonal property of Legendre 

polynomials, we obtain the following infinite set of differential-difference equations1.
2𝜏𝐵

𝑛(𝑛 + 1)
𝑎̇𝑛 + 𝑎𝑛 = 𝜉(𝑡)( 𝑎𝑛 ‒ 1

2𝑛 ‒ 1
‒

𝑎𝑛 + 1

2𝑛 + 3). #(𝑆3)

Then, we make the substitution

𝑓𝑛(𝑡) =
𝜋

∫
0

𝑃𝑛(cos 𝜃)𝑊(𝜃,𝑡)sin 𝜃𝑑𝜃. #(𝑆4)

Using the orthogonal property of Legendre polynomials, we obtain the following relation between 

 and .𝑓𝑛(𝑡) 𝑎𝑛(𝑡)

𝑓𝑛(𝑡) =
2𝑎𝑛(𝑡)

2𝑛 + 1
 #(𝑆5)

Substituting eqn (S5) into eqn (S3) yields the infinite set of differential-difference equations for 

:𝑓𝑛(𝑡)

𝜏𝐵𝑓̇𝑛(𝑡) +
𝑛(𝑛 + 1)

2
𝑓𝑛(𝑡) = 𝜉(𝑡)

𝑛(𝑛 + 1)
2(2𝑛 + 1)

[𝑓𝑛 ‒ 1(𝑡) ‒ 𝑓𝑛 + 1(𝑡)] #(𝑆6)

As our goal is to calculate the magnetization in the steady state, we expand  as a Fourier series𝑓𝑛(𝑡)

𝑓𝑛(𝑡) =
∞

∑
𝑘 =‒ ∞

𝐹𝑛
𝑘(𝜔)𝑒𝑗𝑘𝜔𝑡, #(𝑆7)

where  are the complex Fourier coefficients. Since all the  are real, the complex Fourier 𝐹𝑛
𝑘(𝜔) 𝑓𝑛(𝑡)

coefficients satisfy 
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𝐹 𝑛
‒ 𝑘(𝜔) = [𝐹𝑛

𝑘(𝜔)] ∗  #(𝑆8)

where the asterisk denotes the complex conjugate.

Substituting eqn (S7) into eqn (S6), we obtain the following recurrence relations for the complex 

Fourier coefficients.
𝑧𝑛,𝑘(𝜔)𝐹𝑛

𝑘(𝜔) ‒ 𝜉0[𝐹𝑛 ‒ 1
𝑘 ‒ 1(𝜔) + 𝐹𝑛 ‒ 1

𝑘 + 1(𝜔) ‒ 𝐹𝑛 + 1
𝑘 ‒ 1(𝜔) ‒ 𝐹𝑛 + 1

𝑘 + 1(𝜔)] = 0 #(𝑆9)

where 
𝑧𝑛,𝑘(𝜔) = 2(2𝑛 + 1)[1 + 𝑗

2𝜔𝜏𝐵𝑘

𝑛(𝑛 + 1)].

Using the matrix continued fraction technique2, we can calculate . The time response of  𝐹1
𝑘(𝜔)

 in the steady state can be expressed exclusively in terms of the odd-number components of 𝑓1(𝑡)

. Thus, taking eqn (S8) into account, we obtain𝐹1
𝑘(𝜔)

𝑓1(𝑡) =
𝜋

∫
0

𝑊(𝜃,𝑡)sin 𝜃cos 𝜃𝑑𝜃 = 2
∞

∑
𝑘 = 1

𝑅𝑒[𝐹 1
2𝑘 ‒ 1(𝜔)𝑒𝑗(2𝑘 ‒ 1)𝜔𝑡]. #(𝑆10)

The amplitude of (2k-1)-th harmonic of the magnetic nanoparticles, , which is given by eqn (9), 𝑎2𝑘 ‒ 1

can be calculated as 
𝑎2𝑘 ‒ 1 = 2|𝐹 1

2𝑘 ‒ 1(𝜔)|. #(𝑆11)

References

1. W. T. Coffey, P. J. Cregg and Y. P. Kalmykov, in Advances in Chemical Physics, edited by I. 

Prigogine and S. A. Rice, New York: Wiley, 1993, Vol. 83, p. 263.

2. J. L. Déjardin and Yu. P. Kalmykov, Phys. Rev. E, 2000, 61, 1211–1217.


