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SUPPLEMENTAL INFORMATION
Numerical simulations of harmonic magnetizations
We considered spherical single-domain particles whose dynamics in a liquid suspension are
dominated by Brownian rotational relaxation. In this case, the behavior of magnetic fluids can be
described by the Fokker-Planck equation!:
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where 0 is the angle of the magnetic moment ™ with respect to the excitation field of
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H(t) = Hcos WL W(6,t) is the distribution function of ™, kgl is the ratio

of excitation field energy to the thermal energy, kg is the Boltzmann constant, and T is the absolute

temperature.

We expand W(6.t) into spherical harmonics as
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Where are the Legendre polynomials and a,(t) are time-dependent coefficients for each

spherical harmonic. Using some recurrence relations and the orthogonal property of Legendre
polynomials, we obtain the following infinite set of differential-difference equations'.
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Then, we make the substitution
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Using the orthogonal property of Legendre polynomials, we obtain the following relation between
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Substituting eqn (S5) into eqn (S3) yields the infinite set of differential-difference equations for
ful®).
a0+ 1,0 = ST (0= (O] #56)

As our goal is to calculate the magnetization in the steady state, we expand Fa(® a5 a Fourier series
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where * k are the complex Fourier coefficients. Since all the / V"’ are real, the complex Fourier

coefficients satisfy
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where the asterisk denotes the complex conjugate.
Substituting eqn (S7) into eqn (S6), we obtain the following recurrence relations for the complex
Fourier coefficients.
2, 1 (@) (@) = & [Fi 7 1(w) + Fi 3 1(@) = Fi T (@) - FR T 1(w)] = 0 #(S9)
2wtk

where

1+j

1
Using the matrix continued fraction technique?, we can calculate Fil®) The time response of

F1® i the steady state can be expressed exclusively in terms of the odd-number components of

1
Fi(w), Thus, taking eqn (S8) into account, we obtain
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The amplitude of (2k-1)-th harmonic of the magnetic nanoparticles, 2k-1, which is given by eqn (9),
can be calculated as
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