Electronic Supplementary Information

Engineering endosomolytic nanocarriers of diverse morphologies using confined

impingement jet mixing

Hayden M. Pagendarm^{1,^}, Payton T. Stone^{2,^}, Blaise Kimmel², Jessalyn J. Baljon¹, Mina H. Aziz^{3,4}, Lucinda E.

Pastora², Lauren Hubert⁵, Eric W. Roth⁶, Sultan Almunif⁷, Evan A. Scott⁷⁻¹¹, John T. Wilson^{1,2,12-16*}

¹Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA ²Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37235, USA ³Department of Biochemistry, Vanderbilt University, Nashville, TN 37235, USA ⁴Department of Neuroscience, Vanderbilt University, Nashville, TN 37235, USA ⁵Department of Chemical Engineering, The University of Rhode Island, Kingston, RI 02881, USA ⁶NUANCE BioCryo, Northwestern University, Evanston, IL 60208, USA ⁷Department of Biomedical Engineering, Northwestern University, Evanston, IL 60208, USA ⁸Interdisciplinary Biological Sciences, Northwestern University, Evanston, IL 60208, USA ⁹Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA ¹⁰Simpson Querrey Institute, Northwestern University, Chicago, IL 60611, USA ¹¹Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA ¹²Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA ¹³Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA ¹⁴Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, TN, 37232 ¹⁵Vanderbilt Institute of Nanoscale Science and Engineering, Vanderbilt University, Nashville, TN 37232, USA ¹⁶Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA

^These authors contributed equally to this work

*Corresponding Author: john.t.wilson@vanderbilt.edu

в

Figure S1. Macro CTA Synthesis and Polymer characterization. (A) Synthesis and representative ¹H-NMR analysis (CDCl₃) of PEG macro-CTA, and **(B)** representative ¹H-NMR analysis (CDCl₃) of [PEG]-*bl*-[DEAEMA-*co*-BMA] diblock copolymer.

Figure S2. Images of Nanoparticle Suspensions. Representative images of nanocarrier samples suspended in water captured directly after FNP fabrication and purification.

Figure S3. Cryogenic Electron Microscopy (cryoEM) of 1 Impingement Samples. Representative CryoEM images of polymeric nanocarriers fabricated with 1 impingement.

Figure S5. Viability of MDA-MB-231 Cells Following Treatment with SRB-Loaded Nanocarriers. Viability of MDA-MB-231 cells following treatment with 20 µg/mL SRB within indicated nanocarriers. From "Live Cells" gate described in Fig. S4.

Figure S6. Small-Angle X-ray Scattering (SAXS) Analysis. X-ray scattering curves of DB3kDa (*left*), DB6kDa (*center*), and DB12kDa (*right*) nanocarriers fitted to models of micelles, vesicles, and vesicles, respectively, using the SasView 5.0.5 software package.