Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2023

Anticancer and antibacterial properties of carbon nanotubes are governed by their functional groups

Aleksandra Benko^{1,2,*}, David Medina-Cruz², Sebastian Wilk¹, Magdalena Ziąbka¹, Barbara Zagrajczuk^{1,3}, Elżbieta Menaszek³, Olga Barczyk-Woźnicka⁴, Grégory Guisbiers⁵, Thomas J. Webster⁶

¹AGH University of Science and Technology, Faculty of Materials Science and Ceramics, A. Mickiewicz 30 Ave. 30-059 Krakow, Poland

> ² Department of Chemical Engineering, Northeastern University, 360 Huntington Ave., Boston, MA, United States

³ Department of Cytobiology, Collegium Medicum, Jagiellonian University, 9 Medyczna St., 30-068 Krakow, Poland

⁴ Department of Cell Biology and Imaging, Jagiellonian University, Kraków, Poland

⁵Department of Physics and Astronomy, University of Arkansas at Little Rock, 2801 South University Avenue, Little Rock, AR 72204, United States of America

⁶Department of Biomedical Engineering, Hebei University of Technology, Tianjin, China; School of Engineering, Saveetha University, Chennai, India; and UFPI - Universidade Federal do Piauí, Brazil

* corresponding author. Tel: +48 12 617 52 06. E-mail: abenko@agh.edu.pl

SM 1 Low magnification TEM images of the CNTs used in this study: unmodified (uCNTs), two types of oxidized: HO and LO, and their amidized derivatives: HNH and LNH, respectively.

SM 2 Averaged TG plots of 3 separate measurements conducted on different CNTs types, presented along with the standard deviation values.

SM 3 Averaged DTG plots of 3 separate measurements conducted on different CNTs types, presented along with the standard deviation values.

SM Table 1 Residual masses of the CNTs, left after heating the samples in an inert atmosphere and to a certain temperature, combined with the as-calculated percentages of functional groups, assuming that the total mass lost up to 900 °C (100% comes from different functional groups)

		uCNTs	НО	LO	HNH	LNH
Residual mass at 1200 °C [%]		96.5±1.1	83.7±0.7	87.9±2.3	81.0±2.5	84.4±0.0
Residual mass at 900 °C [%]		98.2±0.6	85.5±1.0	89.5±2.3	86.3±1.2	87.4±0.4
The total amount of carbon atoms at 900 °C (TA _c) [%]		97.6±0.8	81.2±1.2	86.2±2.8	81.6±1.7	83.4±0.5
The total amount of oxygen atoms at 900 $^{\rm o}\text{C}$ (TA_o) [%]		2.4±0.8	18.8±1.2	13.7±2.8	15.5±1.5	9.5±6.7
The total amount of nitrogen atoms at 900 °C (TA $_{\rm N})$ [%]		0	0	0	2.9±0.3	1.6±1.1
relative content [%]	40 – 150 °C hydrogen, physisorbed water	4.5±7.9	6.4±4.4	7.1±5.4	5.2±4.8	5.3±0.2
	150 – 253 °C carboxyl, DCU	3.1±5.4	18.5±0.4	17.1±1.5	20.4±2.0	23.5±1.2
	253 – 315 °C lactone at zig-zag edges, DCU residues	5.1±1.8	9.7±0.7	10.3±0.8	9.2±2.6	15.7±0.4
	315 – 510 °C anhydrides, esters	15.0±6.2	28.3±2.2	27.2±1.9	39.5±5.3	36.2±1.8
	510 – 620 °C lactone at armchair edges	38.4±20.3	16.9±.1.6	16.7±1.9	13.2±0.6	12.8±0.9
	620 – 800 °C phenol, ether, stable derivative of anhydrides	7.8±16.5	15.2±1.6	16.2±4.3	7.4±2.1	1.9±0.8
	800 – 900 °C carbonyl	0.6±0.1	4.9±0.5	5.5±0.6	5.1±0.9	4.8±3.7

SM 4 Proliferation of RAW 264.7 murine macrophages cultured with CNTs, tested via the ToxiLight assay. The data are presented as mean \pm SD. Statistically significant differences (p < 0.05) between the tested materials compared to one another are marked a-g for the 1st day of culture and A–K for the 3rd day of culture; * indicates statistically significant differences between day 1 and day 3 of culture.

SM 5 RAW 264.7 murine macrophage cytotoxicity against CNTs, tested via a ToxiLight assay. The data are presented as mean \pm SD. Statistically significant differences (p < 0.05) between the tested materials compared to one another are marked a–g for the 1st day of culture and A–K for the 3rd day of culture; * indicates statistically significant differences between day 1 and day 3 of culture.

SM 6 ROS production in RAW 264.7 macrophages cultured with CNTs, evaluated via DCFH-DA. The data are presented as mean \pm SD. Statistically significant differences (p < 0.05) between the tested materials compared to one another are marked a-g for the 1st day of culture and A–K for the 3rd day of culture; * indicates statistically significant differences between day 1 and day 3 of culture.

SM 7 Scanning electron images of the macrophage cells and their morphological changes at the end of day 7 of culture with CNTs at a 100μ g/ml concentration.

SM 8. Transmission electron images of the macrophage cells and their interaction with carbon nanotubes. A) LO, B) –LNH. Green arrows indicate visible damage to the cellular membrane.

SM 9 Proliferation of human dermal fibroblasts cultured with increasing concentrations of the modified CNTs. The data are presented as means \pm SD. Statistically significant differences (p < 0.05) between the tested materials compared to one another are marked a–g for the 1st day of culture and A–K for the 3rd day of culture; * indicates statistically significant differences between day 1 and day 3 of culture.

SM 10 Proliferation of melanoma cells cultured with increasing concentrations of the modified CNTs. The data are presented as mean \pm SD. Statistically significant differences (p < 0.05) between the tested materials compared to one another are marked a–g for the 1st day of culture and A–K for the 3rd day of culture; * indicates statistically significant differences between day 1 and day 3 of culture.

SM 11 Antimicrobial properties of CNTs against MDR-EC, as a function of increasing concentration. The data are presented as means \pm SD. Statistically significant differences between the tested materials are marked * (p < 0.05) and ** (p < 0.01)

SM 12 Antimicrobial properties of CNTs against MRSA, as a function of increasing concentration. The data are presented as mean \pm SD. Statistically significant differences between the tested materials are marked * (p < 0.05) and ** (p < 0.01)