
Supporting Information: Optical properties of

orthorhombic germanium sulfide: Unveiling

the Anisotropic Nature of Wannier Exciton

Mehdi Arfaoui ,∗,† Natalia Zawadzka ,‡ Sabrine Ayari ,¶ Zhaolong Chen ,§,∥

Kenji Watanabe ,⊥ Takashi Taniguchi ,# Adam Babiński ,‡

Maciej Koperski ,§,∥ Sihem Jaziri ,† and Maciej R. Molas ∗,‡

†Laboratoire de Physique de la Matière Condensée, Département de Physique, Faculté des

Sciences de Tunis, Université Tunis El Manar, Campus Universitaire 1060 Tunis, Tunisia.

‡Institute of Experimental Physics, Faculty of Physics, University of Warsaw, Warsaw,

Poland.

¶Laboratoire de Physique de l’Ecole normale supérieure, ENS, Université PSL, CNRS,

Sorbonne Université, Université de Paris, 24 rue Lhomond, 75005 Paris, France.

§Institute for Functional Intelligent Material, National University of Singapore, 117575,

Singapore.

∥Department of Materials Science and Engineering, National University of Singapore,

117575, Singapore.

⊥Research Center for Electronic and Optical Materials, National Institute for Materials

Science, 1-1 Namiki, Tsukuba 305-0044, Japan

#Research Center for Materials Nanoarchitectonics, National Institute for Materials

Science, 1-1 Namiki, Tsukuba 305-0044, Japan

E-mail: mehdi.arfaoui@fst.utm.tn; maciej.molas@fuw.edu.pl

S1

Electronic Supplementary Material (ESI) for Nanoscale.
This journal is © The Royal Society of Chemistry 2023

https://orcid.org/0000-0001-7628-4159
https://orcid.org/0000-0002-3282-9513
https://orcid.org/0000-0001-9765-5748
https://orcid.org/0000-0002-6172-5713
https://orcid.org/0000-0003-3701-8119
https://orcid.org/0000-0002-1467-3105
https://orcid.org/0000-0002-5591-4825
https://orcid.org/0000-0002-8301-914X
https://orcid.org/0000-0001-6238-2081
https://orcid.org/0000-0002-5591-4825
mehdi.arfaoui@fst.utm.tn
maciej.molas@fuw.edu.pl


Contents

A Supporting experimental results S3

A.1 Polarization-resolved reflectance contrast spectra of GeS . . . . . . . . . . . S3

A.2 The influence of excitation energy on the PL spectra of GeS . . . . . . . . . S4

A.3 The polarization and temperature evolutions of the PL spectra of GeS under

the 2.41 eV excitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . S5

B Identification of low energy peaks in GeS S7

C Independent Particle Approximation for Linear Optical Response S10

D GW method and Bethe-Salpeter Equation S11

E Projected Density of States of GeS S12

F Anisotropic Wannier exciton theory within the effective mass approxima-

tion S14

References S23

S2



A Supporting experimental results

A.1 Polarization-resolved reflectance contrast spectra of GeS
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Figure S1: False-colour map of the low-temperature (T=5 K) polarization-resolved RC spec-
tra measured on the GeS encapsulated in h-BN flakes.

Figure S1 shows the low-temperature (T=5 K) polarization-resolved reflectance contrast

(RC) spectra measured on the GeS encapsulated in h-BN flakes. In contrast to the several

emission lines observed in the corresponding PL spectra shown in Figures S2 and S3, the

RC spectra consist of a single resonance. Furthermore, its energy of about 1.78 eV coincides

with the X emission line. The polarization dependence of the X resonance indicates that

this transition is linearly polarized along the armchair direction, as well as its emission

counterpart (see Figure S3). The obtained RC results confirm that the energetically lowest

optical transitions in GeS are dominated by a direct transition polarized along the armchair

direction.
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A.2 The influence of excitation energy on the PL spectra of GeS
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Figure S2: (a) The low-temperature (T=5 K) PL spectra of the investigated GeS encap-
sulated in h-BN flakes under five different excitation energies, denoted in the figure. (b)
The integrated intensities of the free (X) and localized (L1 and L2) excitons as a function of
excitation energy. Note that the X intensity was multiplied 5 times for clarity.

As we found that the encapsulation energy can strongly affect the L1 and L2 intensities

(compare Figure 1(c) in the main text and the one reported in Ref.1), we performed mea-

surements of the low-temperature PL spectra of the GeS encapsulated in the h-BN flakes

under five different excitation energies, see Figure S2(a). The modification of the laser en-

ergy causes two main effects: (i) The emission intensity of the X line is significantly reduced

by around 30 times with the change of the excitation energy from 1.88 eV to 2.54 eV. While

the 1.88 eV excitation is possible only around the Γ point of the Brillouin zone (BZ), the

high energy 2.54 eV one may involve transitions originating from different points of the BZ,

see Figure 5(a) in the main text. (ii) The relative intensity of the emission lines due to the

localized (L1 and L2) and free (X) excitons is also substantially modified when excitation

is changed. To investigate this effect in detail, we measured PL excitation (PLE) spectra.

Figure S2 presents the integrated intensities of the free (X) and localized (L1 + L2) excitons

as a function of the excitation energy in the energy range from about 1.97 eV to 2.63 eV.

The measured PLe spectra of the X and L1 + L2 are analogous to their behaviour shown
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in panel (a) of the Figure. The emission intensity of the X line experiences a monotonic

reduction of more than 4 times. Simultaneously, the L1 + L2 intensity is enhanced twice

when the excitation energy is increased from 1.97 eV to about 2.15 eV, and then stays almost

at the same level. It suggests that at illuminations higher than 2.15 eV, the excited carriers

are subjected to more nonradiative processes, which leads to an increase in probability of

the L1 and L2 emission, see Figure 5(a) in the main text. Note that when we combine the

results obtained in panels (a) and (b) of Figure S2, the extraordinary reduction of the X

intensity in transition from 1.88 eV to 2.63 eV excitation is on the order of 50 times, which

is accompanied by an increase in the intensity of L1 + L2.

A.3 The polarization and temperature evolutions of the PL spectra

of GeS under the 2.41 eV excitation
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Figure S3: False-colour map of the low-temperature (T=5 K) polarization-resolved PL spec-
tra measured on the GeS encapsulated in h-BN flakes under excitation of 2.41 eV. Note that
the intensity scale is linear.

To investigate the origin of the L1 and L2 emission lines, we measured the polarization and

temperature evolutions of the low-temperature (T=5 K) PL spectra of the GeS encapsulated

in h-BN flakes under excitation of 2.41 eV, see Figures S3 and S4. The choice of excitation

energy is motivated by the relatively high intensity of the L1 and L2 peaks under this laser
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energy compared to others, see Figure S2. As can be seen in Figure S3, the L1 and L2 lines

are linearly polarized along the same armchair direction as the neutral exciton transition.

Moreover, with increasing temperature, the low-energy L1 and L2 peaks quickly disappear

from the PL spectra, see Figure S4(a). At T=60 K, only the X emission contributes to

the PL spectrum, which is seen up to 130 K. The possibility of the X observation at smaller

temperature range, only to 130 K under the 2.41 eV excitation versus 190 K under the 1.88 eV,

can be understood in terms of the significant decrease in the X intensity when the excitation

energy increases (see Figure S2). The temperature dependence of the X line leads to the

typical redshift and the linewidth broadening at higher temperatures, which is presented in

Figures. S4(b) and (c) with the corresponding fitted curves. The temperature evolutions of

the energy and the linewidth of the X line are characterized using the Odonnell2 and Rudin3

relations, introduced in the main text. We use the same values of phonon related parameters,

i.e., < h̄ω >=26 meV and h̄ω=30 meV, while the other parameters were free. The fitted

curves reproduce quite well the experimental data. Note that the observed temperature

dependence of the L lines is very similar to the previously reported behavior of the so-called

“localized” excitons in monolayers of WS2 and WSe2 exfoliated on Si/SiO2 substrates.4,5
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Figure S4: (a) The temperature-dependent PL spectra measured on the GeS flake with
2.41 eV laser light excitation. The spectra are vertically shifted and are divided by scaling
factors for clarity. The determined (b) energy and (c) full width at half maximum (FWHM)
of the neutral exciton (X) line. The circles represent the experimental results while the
curves are fits to the data obtained with the aid of Eq. 1 and 2, described in the main text.
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B Identification of low energy peaks in GeS

In addition to the free neutral exciton peak located around 1.78 eV (see Figure S3), at low

temperature (T=5 K), PL measurements proved the existence of multiple emission peaks

on GeS flake, which are located about 60-100 meV, below the neutral exciton. The nature

and origin of these low-energy emission bands remain unknown from both theoretical and

experimental considerations. Different scenarios can be discussed to identify some of those

peaks: i) exciton plus negative trion (X−) and its fine structure; ii) exciton plus biexciton

(XX) and auger recombination process; iii) exciton plus an optical phonon replica; and iv)

exciton plus a localized state.

Starting by testing the assumption that the lower state is an emission of charged excitons

(X−) and it’s a fine structure. In the presence of residual charges, the Coulomb interaction

could further bind an electron or hole to an exciton to form a charged exciton (negative

and/or positive, depending on the doping conditions). X− appears frequently in 2D TMDs,6,7

phosphorus,8,9 and CdSe platelets.10 In the absorption and emission spectra, X− and its fine

structure are observed at energies lower than those of the neutral excitons.6,7 Typically, the

binding energy (BE) of a charged exciton, i.e., the energy difference between X and X−

is very small compared to the exciton BE,10–12 so it is difficult to observe it in semi-3D

conductors, which require low temperatures and very high-quality crystals. To form an X−

complex, the excess carrier added to the generated exciton has to stem from an ionized

exciton from the previous laser pulse. Thus, the very low excitation density used rules out

an efficient X− generation. Among the options considered for the lower states, Lj, is a

Biexciton (XX). An XX complex is a bound state of two electrons and two holes. It is often

described approximately as the bound state of two excitons, where the interaction between

the excitons is treated as a perturbation.13,14 This approximation is justified if the BE of

XX (the energy difference between the two free excitons and the XX) is much smaller than

that of the exciton.

An agreement against XXs is the low excitation density 50µW/cm−2 used in our PL
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measurements, as Poisson statistics result in a negligible probability for absorption of two

photons within one laser pulse. In addition to XX and X− fine structure, two other possible

mechanisms including exciton–phonon interaction and defect-related scattering can be dis-

cussed to give a reasonable explanation for these exceptional multiple emission peaks in the

spectra.

Starting with the phonon replicas. The D16
2h space group gives rise to 24 vibrational

modes. Their representation in the center of the zone is: Γ = 4Ag + 2B1g + 4B2g + 2B3g +

2Au+4B1u+2B2u+4B3u. There are seven infrared-active phonons and twelve Raman-active

phonons. Raman and infrared modes are split as a result of interlayer interactions.1 A replica

phonon of the exciton peak at EL1 is one of the options available for the low-peaks. Excitons

with a large wavevector K can recombine if a phonon or several phonons are involved that

provide the necessary momentum q = K1 − K2, with K1 (K2) being the wavevector of

the initial (intermediate) exciton state. The so-called zero-phonon line at energy EX
1̃s

is then

accompanied by a phonon replica below EX
1̃s

at integer multiples of the optical phonon energy

h̄ωph with energy En = EX
1̃s
− nh̄ωph. This presumption can only be proved if the exciton

and the induced replica phonon peak have the same dynamic properties. In Figure S2(a,b),

we experimentally investigated the effect of excitation energy on the PL spectra and we

found that the exciton peak and the low emission line L1 and L2 have different behavior as

a function of the excitation energy, which can be an argument against the replica phonon

nature of those low-lying peaks, since it is expected that they follow the same trend as the

main exciton peak, as both are related to the excitonic transition.

Finally, we test the assumption that the lower states L1 and L2 are localized excitons.

As a result of thermal equilibrium and the kinetics of processing, all real materials contain

structural imperfections that could significantly affect their properties.15–17 In fact, struc-

tural defects such as residual impurities, vacancies, adatoms, interstitials, and anti-sites,15–19

often introduce rich luminescent properties in semiconductor materials. When photo-excited

electron-hole pairs are trapped in a disorder potential, which may be created by lattice de-
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fects, localized states may form within the band gap (BG) with an emission energy below the

exciton. In temperature-dependent PL spectroscopy measurements (see Figure S4), these

low emission peaks were observed at relatively low temperatures (T < 60K), in such a way

that they vanish faster than the exciton as a function of temperature. A possible explanation

is that, as compared with exciton, these peaks have smaller BEs, which can be termalized

more easily with increasing temperatures. In fact, at low temperatures, a certain amount of

carriers could be captured by these localized, trapped states. As the temperature increased,

the trapped carriers could be released again from the localized states and recombine radia-

tively, leading to the increased PL intensity of the exciton. Furthermore, the dependence of

the L1 and L2 peak on the excitation energy (in Figure S2(a, b)) suggests the presence of

an effective exciton “mobility edge”, i.e., below (above) a certain energy, the center-of-mass

motion of the excitons is localized (delocalized).20 Depending on this qualitatively study,

exciton localized state is the most likely mechanism. The latter has also been widely used

for explaining the low-energy peak in PL spectroscopy in TMDs and traditional semicon-

ductor materials. However, our understanding of the fundamental properties of the multiple

emission lines in GeS remains incomplete. These suggested possible mechanisms still need

to be systematically addressed theoretically and experimentally, which is beyond the scope

of this article.
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C Independent Particle Approximation for Linear Opti-

cal Response

In the independent particle approximation (IPA), the diagonal elements of the imaginary

part of the dielectric tensor in the long-wavelength limit are basically given by21

ε2i,i(ω) =
4πe2

ΩNkm2

∑
n

∑
k∈BZ

df (Ek,n)

dEk,n

ηωMc,v
i,i (k)

ω4 + η2ω2︸ ︷︷ ︸
Intraband

+
8πe2

ΩNkm2

∑
nc ̸=nv

∑
k∈BZ

Mc,v
i,i (k)

Ek,nc − Ek,nv

γωf (Ek,nv)[
(ωk,nc − ωk,nv)

2 − ω2
]2

+ γ2ω2
,︸ ︷︷ ︸

Interband

(S1)

while the real part comes from the Kramers-Kronig transformation, which reads

ε1i,i(ω) = 1− 4πe2

ΩNkm2

∑
n

∑
k∈BZ

df (Ek,n)

dEk,n

ω2Mc,v
i,i (k)

ω4 + η2ω2︸ ︷︷ ︸
Intraband

+
8πe2

ΩNkm2

∑
nv ̸=nc

∑
k∈BZ

Mc,v
i,i (k)

Ek,nc − Ek,nv

[
(ωk,nc − ωk,nv)

2 − ω2
]
f (Ek,nv)[

(ωk,nc − ωk,nv)
2 − ω2

]2
+ γ2ω2︸ ︷︷ ︸

Interband

(S2)

where γ and η are the broadening of the interband and intraband transitions, respectively.

Mc,v
i,i (k) is the squared optical transition dipole matrix elements (OME), where k is the single

particle wavevector. The OME, Mc,v
i,i (k), obtained by the density functional theory (DFT)

calculation and determines the optical strength of a transition. Furthermore, it contains

all symmetry-imposed selection rules. Ω is the volume of the lattice cell, nv and nc belong

correspondingly to the valence and conduction bands, Ek,n are the eigenvalues, and f(Ek,n)

is the Fermi distribution function that accounts for the occupation of the bands with band

index n. The derivative of the Fermi distribution function for interband transitions, described

by the first sum in Eq. S1 and Eq. S2, is substantially zero, except in the region close to the

Fermi level.
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D GW method and Bethe-Salpeter Equation

The Bethe-Salpeter equation (BSE) is calculated on top of the GW eigenvalues. Conduction

band energies are rigidly shifted by the GW correction, although valence band energies are

barely affected. Therefore, the effective masses of the hole and electron states do not differ

between DFT and GW. Based on the Kohn–Sham wavefunctions and the quasi-particles cor-

rection, the optical spectra are derived at the level of the BSE using the following equation22

(
EQP

ck − EQP
vk

)
AS

vck +
∑
k′v′c′

⟨vck |Keh| v′c′k′⟩AS
v′c′k′ = ΩSAS

vck, (S3)

where EQP
ck and EQP

vk are the quasiparticle energies of the valence and conduction band

states obtained with the GW method, respectively. AS
vck and ΩS correspond to the exciton

eigenstates and eigenvalues of the Sth exciton. The electron-hole interaction kernel, Keh,

contains the exchange interaction V (repulsive) and the screened Coulomb interaction W

(attractive). The imaginary part of the dielectric function ε2(h̄ω) is calculated from the

excitonic states as follows23

ε2(h̄ω) ∝
∑
S

∣∣∣∣∣∑
cvk

AS
vck

⟨ck |pi| vk⟩
εc,k − εv,k

∣∣∣∣∣
2

δ
(
ΩS − h̄ω − γ

)
, (S4)

where ⟨ck |p| vk⟩ are the dipole matrix elements of the transitions from the valence bands

to the conduction bands. γ is the broadening energy. In the main text, the exciton weight

represented in k-space is defined as follows w(k) =
∑

nt
|Antk|

2, which sums over transitions

at each k point. In addition, The electron-hole (e-h) excited state is represented by the

expansion22

|S⟩ =
e∑
c

h∑
v

∑
k

Avck |vck⟩ . (S5)

From the solution of the BSE, we obtain the coefficients Avck. Representation of this function

is usually done by fixing the hole position and representing the exciton density as a function

of the electron position.
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The single-shot G0W0 method commonly used in computational physics to calculate the

electronic properties of solid systems. However, the technique sometimes produces unsat-

isfactory results because of its reliance on the DFT-starting point, resulting in a BG that

is insufficiently small compared to the experimental one. To overcome this issue, we used

the self-consistency of GW only on eigenvalues (evGW), which improves the accuracy of the

calculation. It involves an iterative calculation of evGW up to four times, ensuring that the

difference between consistent GW values is 0.01 eV, ultimately leading to convergence of the

BG, see Figure S5.

Figure S5: Quasi-particle bandgap calculation: Scissor operator correction in QP and renor-
malization of conduction and valence bands.

E Projected Density of States of GeS

The projected fatband density of states (PDOS) can be calculated by projecting the wave-

functions onto the atomic orbitals. The resulting fatband PDOS, presented in Figure S6,
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provides information on the distribution of the electronic states of GeS. Each band is as-

signed a color that represents the s-, p-, and d-orbitals. We report the PDOS on both the

Ge and S atoms, as depicted in Figure S6(a)-(f). The obtained results demonstrate that the

valence (conduction) states are contributed predominantly by S (Ge) atoms, with signifi-

cant contributions of p-orbital. These results align well with previous theoretical predictions

reported in the Refs.24–26

Figure S6: Electronic band structures with orbital projections for GeS. The orbital
projections are depicted with varying radii, with the size of the colored circles representing
the relative weight of the orbital contributions to the electronic states.
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F Anisotropic Wannier exciton theory within the effec-

tive mass approximation

Different methods have been used to calculate the optical properties of exciton states in

semiconductor nanostructures, such as the variational method,27–29 ab-initio calculations

based on GW+BSE,30,31 and the effective mass theory (EMA).32–34 The variational method

has limitations and is typically used to calculate low-energy states, making it less powerful

than alternative methods for higher-energy states. The ab-initio calculations are an accurate

way to calculate the exciton states. However, they are computationally expensive and it is

difficult to systematically study some effects by varying a few phenomenological parameters.

The EMA has the advantage of performing simple and fast computational procedures to

accurately calculate the ground and excited states. Moreover, we were able to systematically

study the effect of the anisotropy on the optical properties of the exciton in GeS, which helps

us to more intuitively understand the role of excitonic effects. The anisotropy of excitons in

GeS is of great importance for both fundamental research and device applications.

Here, we employ a variationally optimized diagonalization method based on a hydrogenic

basis to calculate the properties of the exciton states in bulk GeS. To dig deeper into the

excitonic anisotropy in such crystals, we used the EMA. The Hamiltonian that describes the

exciton anisotropy can be written as follows

HX =
∑

i=x,y,z

Pi,e
2

2me,i
eff

+
∑

i=x,y,z

Pi,h
2

2mh,i
eff

+VCoul(|re − rh|), (S6)

where the momentum operator Pi,ν = −ih̄∇i,ν ; (i = x, y, z). mν,i
eff is the effective mass of the

electron (ν = e) and the hole (ν = h) in different directions i. rν = (xν , yν , zν) are the position

vectors of the electron and hole. VCoul(|re−rh|) represents the Coulomb interaction between

the electron and hole screened by the background dielectric constants εi of the anisotropic

semiconductor. Excitonic properties in bulk semiconductors differ from those in monolayers
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of the same material. In 2D materials, such as TMDs and black phosphorus, excitons are

strongly confined, and dielectric screening is reduced, leading to non-hydrogenic Rytova-

Keldysh potentials.35–39 In contrast, bulk excitons are less confined and less sensitive to

the dielectric environment. Our previous work1 showed that the low-temperature (T=5 K)

emission due to the free excitons measured on the GeS exfoliated on the SiO2/Si substrate is

similar to those reported here, which is obtained for the GeS encapsulated in the h-BN flakes.

This indicates that excitonic optical properties in bulk GeS are independent of the dielectric

environment. As such, e-h interactions in 3D homogeneous dielectric environments can be

well described by the Coulomb potential. Using the relative and center-of-mass (COM)

coordinates,

r =


x = xe − xh,

y = ye − yh,

z = ze − zh,

,RCM =



XCM =
me,x

effxe +mh,x
effxh

me,x
eff +mh,x

eff

,

YCM =
me,y

effye +mh,y
effyh

me,y
eff +mh,y

eff

,

ZCM =
me,z

effze +mh,z
effzh

me,z
eff +mh,z

eff

,

. (S7)

The Hamiltonian in Eq. S6 can be separated in COM and relative motion HX = HCM
X +Hrel

X .

The free COM motion of the exciton is described by

HCM
X = −

h̄2∇2
XCM

2MX,x

−
h̄2∇2

YCM

2MX,y

−
h̄2∇2

ZCM

2MX,z

, (S8)

where MX,i = me,i
eff +mh,i

eff denotes the exciton mass in direction i.

The relative motion of the exciton can be described by the following Schrödinger equation

[
− h̄2

2

( 1

µx

∂2

∂x2
+

1

µy

∂2

∂y2
+

1

µz

∂2

∂z2

)
− e2√

εyεzx2 + εxεzy2 + εxεyz2

]
Ψrel

ñ,ℓ̃,m̃
(r) = E rel

ñ,ℓ̃,m̃
Ψrel

ñ,ℓ̃,m̃
(r),

(S9)

where E rel
ñ,ℓ̃,m̃

represents the relative eigenvalue and Ψrel
ñ,ℓ̃,m̃

(r) are the corresponding eigen-

functions. Here, µi = (me,i
effm

h,i
eff )/(m

e,i
eff + mh,i

eff ) is the reduced mass of the exciton along
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the direction i and e is the electron charge. εi is the dielectric constant in the direction i.

If we change the variable (x, y, z, ) into (ξ, η, ζ) =
(√

µx

µ̄
x,
√

µy

µ̄
y,
√

µz

µ̄
z

)
, and if we

define the anisotropy parameters A =
µ̄

µx

εyεz
ε̄2

, B =
µ̄

µy

εxεz
ε̄2

and C =
µ̄

µz

εxεy
ε̄2

,40 we obtain

the following equation:

Hrel
X = − h̄2

2µ̄

( ∂2

∂ξ2
+

∂2

∂η2
+

∂2

∂ζ2

)
− e2

ε̄
√

Aξ2 +Bη2 + Cζ2
, (S10)

where the anisotropy is now concentrated in the potential instead of the kinetic term. The

anisotropy parameters A, B, and C are supposed to be real and positive.

1

µ̄
=

ε̄

3

(
1

εxµx

+
1

εyµy

+
1

εzµz

)
, ε̄ = 3

√
εxεyεz (S11)

are the average-reduced mass and the average-dielectric constant, respectively. We treat the

problem in spherical coordinates, where ρ =
√
ξ2 + η2 + ζ2.

When an isotropic Coulomb potential is integrated into the Hamiltonian, the resultant

relative Hamiltonian, Hrel
X , can be decomposed into two distinct components Hrel

X = Hhyd +

Hper. The first term is the unperturbed Hamiltonian Hhyd, which has a spherical symmetry

and defines the effective 3D hydrogenic Hamiltonian. The eigenstates of Hhyd are exact and

correspond to the 3D hydrogenic eigenenergies En = −R̄y/n
2 and eigenfunction33

Φn,ℓ,m(ρ, θ, ϕ) =

√(
2

nab

)3
(n− ℓ− 1)!

2n(n+ ℓ)!
e
−

ρ

nab

(
2ρ

nab

)ℓ

L2l+1
n−ℓ−1

(
2ρ

nab

)
Ym

ℓ (θ, ϕ), (S12)

where Ym
ℓ (θ, ϕ) is the spherical harmonic function. Lα

β is the generalized Laguerre polyno-

mials. ab =
ε̄h̄2

µ̄e2
is the 3D-exciton effective Bohr radius and R̄y = e4µ̄

2 ε̄2h̄2 is the 3D-effective

Rydberg energy. In this notation, n, ℓ and m are the principal, the azimuthal, and the mag-

netic quantum number, respectively. The degeneracy of the states is quantified as n2-fold.

The labeling convention for these states, according to their ℓ, is as follows: s for ℓ = 0,

p for ℓ = 1, and d for ℓ = 2. The spherical coordinate representation of the perturbed
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Hamiltonian, Hper, is expressed as

Hper =
e2

ε̄ρ

(
1− 1√(

A cos(ϕ)2 +B sin(ϕ)2
)
sin(θ)2 + C cos(θ)2

)
. (S13)

The unperturbed Hamiltonian belongs to the infinite group of isotropic space, which

is invariant under all symmetry operations. The perturbation reduces the sym-

metry of the system, leads to increase the degeneracy. The original problem

of solving Hrel
X is now transformed into a matrix diagonalization problem, where

the corresponding components are ⟨Φn,ℓ,m|Hrel
X |Φn,ℓ,m⟩ and the basis Bn,ℓ,m =

{Φn,ℓ,m(ρ, θ, ϕ), n ∈ N∗, 0 ≤ ℓ ≤ n− 1,−ℓ ≤ m ≤ ℓ} . To evaluate the magnitude order of the

perturbation, in the following, we compute the perturbed matrix elements E per
n,ℓ,m

n′,ℓ′,m′
for dif-

ferent states

E per
n,ℓ,m

n
′
,ℓ
′
,m

′
(A,B,C) = ⟨Φn,ℓ,m|Hper |Φn′ ,ℓ′ ,m′ ⟩ = −R̄y G n,ℓ

n
′
,ℓ
′

(
F ℓ,m

ℓ
′
,m

′
(A,B,C) +H ℓ,m

ℓ
′
,m

′

)
(S14)

where the integral of the radial part is given by

G n,ℓ
n′,ℓ′

=

∫ ∞

0

Rnℓ(ρ) ·Rn′ℓ′(ρ) · ρ dρ. (S15)

In particular, if n = n′

G n,ℓ
n′,ℓ′

=
1

2n2

[
δℓ,ℓ′ +

(
(n− ℓ)(n− ℓ+ 1)

(n+ ℓ)(n+ ℓ− 1)

)1/2

δℓ,ℓ′+2

]
. (S16)

The angular part is given by the following two matrix elements

H ℓ,m

ℓ
′
,m

′
=

∫ 2π

0

∫ π

0

Ym
′

ℓ′ (θ, ϕ)Y
m
ℓ (θ, ϕ)

∗sin(θ)dθdϕ = δℓ,ℓ′δm,m′ , (S17)
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F ℓ,m

ℓ
′
,m

′
(A,B,C) =

∫ 2π

0

∫ π

0

Ym
′

ℓ′ (θ, ϕ)Y
m
ℓ (θ, ϕ)

∗sin(θ)dθdϕ√(
Acos2(ϕ) +Bsin2(ϕ

)
sin2(Θ) + Ccos2(θ)

, (S18)

where Fℓ,m,ℓ′ ,m′ (A,B,C) depend on the anisotropic parameters and on the angular quan-

tum numbers ℓ, m, ℓ′ and m
′ . The diagonalization of the Hamiltonian matrix constructed

from the anisotropic coulomb potential leads to the following eigenstates Ψrel
ñ,ℓ̃,m̃

(ρ, θ, ϕ) =∑
n,ℓ,m Cn,ℓ,mΦn,ℓ,m(ρ, θ, ϕ) where the coefficients Cn,ℓ,m are obtained by solving the matrix

problem. The subscripts on the coefficient Cn,ℓ,m noted ñ,ℓ̃, and m̃ refers now to the dominant

contribution of the coefficients to the excitonic function, corresponding to the coefficient of

the highest weight. In the actual numerical calculations, the number of basis functions Bn,ℓ,m

should be finite. The basis functions are usually chosen, provided that they are the low-lying

energy states of the Hamiltonian. We have computed eigenvalues and eigenfunctions that

extend the basic set of wavefunctions until convergence is reached. To achieve the necessary

precision for calculating the ground state energy and to ensure system convergence in our

numerical computations, we considered hydrogen states with principal quantum numbers, n,

up to 15 along with their corresponding orbital quantum numbers. The numerical procedure

becomes stable for n = 5. The solutions of the resulting Schrödinger equation of the system

satisfy the eigenequation

(
HCM

X +Hrel
X

)
Υñ,ℓ̃,m̃(RCM ,ρ) = EX

ñ,ℓ̃,m̃
Υñ,ℓ̃,m̃(RCM ,ρ) (S19)

are given by the eigenfunction

Υñ,ℓ̃,m̃(RCM ,ρ) = ΦCM(RCM)Ψrel
ñ,ℓ̃,m̃

(ρ) (S20)
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and the eigenvalue

EX
ñ,ℓ̃,m̃

(K) = EGW
g − EB

ñ,ℓ̃,m̃
+
∑

i=x,y,z

h̄2K2
i

2MX,i

, (S21)

where EB
ñ,ℓ̃,m̃

= −Erel
ñ,ℓ̃,m̃

is the exciton BE. ΦCM(RCM) = 1√
V
expiRCMK is COM wavefunc-

tion. EGW
g = EQP

c − EQP
v and K = (Kx, Ky, Kz) denote the QP BG and COM wavevector,

respectively. V = NΩ is the volume of bulk semiconductors. N and Ω represent the total

number of primitive cells in the crystal and the volume of the unit cell, respectively. The

exciton has an energy dispersion as a function of the COM wavevector K, which describes

the translational motion of an exciton with quasi-momentum h̄K. Thus, only the exciton

with K = 0 can recombine by emitting a photon, which is termed a coherent exciton. Con-

sequently, excitons with K ̸= 0 cannot recombine directly to emit a photon and therefore

are dark excitons. However, recombination emission for K ̸= 0 (in particular incoherent

excitons) is possible and can be generated by a further phonon-assisted process, which we

call an indirect transition. In the following section, since we are considering coherent optical

excitation of excitons by photons, the excited excitons are predominantly those with zero

COM momenta.

Once the exciton energy and wave functions have been obtained by diagonalizing the

Hamiltonian, using the dipole matrix elements relevant to interband optical transitions, in

this section we calculate the oscillator strength (OS) of the free neutral exciton. Because

we work at low temperatures and under low-density excitation, we do not consider ther-

malization processes. The light-matter interaction in the Coulomb gauge under low-density

excitation can be described by the Hamiltonian as follows41

Hopt =
eA(r) · p

m0c
(S22)

where p is the electron momentum operator, e is the elementary charge. In the Fock repre-

S19



sentation, the vector potential operator in the second quantization can be written as

Aq(r, t) = Aq(r)e
−iωqt +A+

q (r)e
iωqt (S23)

with

Aq(r) =

√
2πh̄c

n0qV
×αqe

iqraq (S24)

The operator a+q (aq) creates (annihilates) a photon with the wavevector q. αq denotes the

photon polarization unit vector. The optical angular frequency is defined by ωq = c
n0
|q|,

where n0 is the effective optical refraction index of the crystal environment. c is the light

velocity and V is the normalized volume. The light-matter coupling can be evaluated on the

basis
{
|. . . , nq, . . .⟩ ⊗ |ζ ñ,ℓ̃,m̃X ⟩

}
. Here, {| . . . , nq, . . . .⟩} are the electromagnetic field states in

the Fock representation. The solution of the Schrödinger equation for an anisotropic exciton

in a solid is as follows

ζ ñ,ℓ̃,m̃X (re, rh) = Υñ,ℓ̃,m̃(RCM,ρ)uc,k (re)u
∗
v,k (rh) (S25)

where uc,k (re) and uv,k (rh) are the Bloch functions of the valence (v) and conduction (c)

bands, respectively. Υñ,ℓ̃,m̃(RCM,ρ) is the envelope wavefunction. In our work, the initial

state consists of an excitonic state without a photon |i⟩ =
∣∣∣ζ ñ,ℓ̃,m̃X

〉
⊗ |0q⟩, while the final

state consists of the crystal ground state |∅⟩ with one photon |f⟩ = |∅⟩⊗ |1q⟩. The OME

can be written as

(
⟨1q| ⊗ ⟨∅|

)
A+

q (r) · p
(
|ζ ñ,ℓ̃,m̃X ⟩ ⊗ |0q⟩

)
=

√(
2πh̄c

n0qV

)
F̄ ñ,ℓ̃,m̃
q,c,v (S26)

where F̄ ñ,ℓ̃,m̃
q,c,v = αq·

〈
∅ |eiq·rp| ζ ñ,ℓ̃,m̃X

〉
is the OME between the crystal ground state |∅⟩ and the

excited states |ζ ñ,ℓ̃,m̃X ⟩ corresponding to the direct exciton state in bulk GeS, which is derived

from the electron-photon coupling. The linear optical properties of three-dimensional exci-
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tons have been investigated theoretically. In fact, the OS of the optical interband transition

for exciton states is defined by42

f
αq

ñ,ℓ̃,m̃
=

2

m0h̄ω0

∣∣∣F̄ ñ,ℓ̃,m̃
q,c,v

∣∣∣2 (S27)

here, the optical transition frequency is ω0 = |ωi − ωf | = ωX , with EX
ñ,ℓ̃,m̃

= h̄ωX . To

calculate the OME obtained considering the interaction with the first-order electromagnetic

field, it is convenient to work with the Fourier transforms of the envelope wavefunction

ζ ñ,ℓ̃,m̃X (RCM,ρ) =
1

(2π)6

∫ ∫
dKdk ei

(
K.RCM+k.ρ

)
Φ̄CM(K)Ψ̄rel

ñ,ℓ̃,m̃
(k)uc,k(re)u

∗
v,k(rh) (S28)

where the COM and relative wavefunction, in momentum-space, reads

Φ̄CM(K) =

∫
eiK.RCMΦCM(RCM)dRCM (S29a)

Ψ̄rel
ñ,ℓ̃,m̃

(k) =

∫
eik.ρΨrel

ñ,ℓ̃,m̃
(ρ)dρ (S29b)

here, K = ke+kh and k =
mh

i ke−me
ikh

MX,i
are the COM and the relative wavevectors, respectively.

By considering the following change of variables, (K,k) ⇒ (ke,kh), with dKdk = dkedkh,

the envelope wavefunction, ζ ñ,ℓ̃,m̃X , can be written as follows

ζ ñ,ℓ̃,m̃X (re, rh) =
1

(2π)6

∫ ∫
dkedkhe

i(ke·re+kh·rh)Φ̄ (K) Ψ̄rel
ñ,ℓ̃,m̃

(k)uc,k (re)u
∗
v,k (rh) (S30)

By converting the integral into a sum ( 1
V

∑
k∈1BZ ≈

∫
k∈1BZ

dk
(2π)3

), we can rewrite

ζ ñ,ℓ̃,m̃X (re, rh) as follows

ζ ñ,ℓ̃,m̃X (re, rh) =
1

V 2

∑
ke∈BZ

∑
kh∈BZ

ei(ke·re+kh·rh)Φ̄CM(K)Ψ̄rel
ñ,ℓ̃,m̃

(k)uc,k (re)× u∗
v,k (rh) (S31)

The Bloch functions uc,k (re), u∗
v,k (rh) = uh,−k (rh) vary slowly when ke (kh) vary around
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the k-points. We can therefore write

ζ ñ,ℓ̃,m̃X (re, rh) =
1

V

∑
ke,kh∈BZ

Φ̄CM(K)Ψ̄rel
ñ,ℓ̃,m̃

(k)Υc,ke (re)×Υ∗
v,kh

(rh) (S32)

where the electron and hole wavefunctions reads

Υc,ke (re) =
1√
V
eike·reuc,ke (re) (S33a)

Υv,kv (rh) =
1√
V
eikv ·rhuv,kv (rh) . (S33b)

Here kh = −kv. In fact, the hole state is related to the valence electron state by Υkh
(r) =

KΥkv(r) with K being the time-reversal operator.43 By substituting Eq. S30 in Eq. S26, and

since ke,kh ∈ BZ, the OME reads

F̄ ñ,ℓ̃,m̃
q,c,v =

1

V

∑
ke,kh

Φ̄CM(K)Ψ̄rel
ñ,ℓ̃,m̃

(k) ⟨uc,ke |αq · p|uv,kv⟩ δke,kv+q. (S34)

The COM and relative wavevectors can be rewritten as K = ke + kh = ke − kv = q

k = ke −
me,i

eff

M i
X
q

(S35)

Using Eq. S35 and Eq. S34, we can rewrite F̄ ñ,ℓ̃,m̃
q,c,v as follows

F̄ ñ,ℓ̃,m̃
q,c,v =

1

V

∑
ke

Φ̄CM(q)Ψ̄rel
ñ,ℓ̃,m̃

(ke)αq · ⟨uc,k|p|uv,k⟩ (S36)

At the scale of q, Φ̄CM(q) is slowly varying, so Φ̄CM(q) = Φ̄CM(0), hence,

F̄ ñ,ℓ̃,m̃
q,c,v =

1

V
Φ̄CM(K = 0)

∑
ke

Ψ̄rel
ñ,ℓ̃,m̃

(ke)αq · ⟨uc,k|p|uv,k⟩ (S37)
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with

1

V

∑
ke

Ψ̄rel
ñ,ℓ̃,m̃

(ke) =
1

(2π)3

∫
dkeΨ̄ñ,ℓ̃,m̃ (ke) = VΨrel

ñ,ℓ̃,m̃
(ρ = 0) (S38a)

Φ̄CM(K = 0) =

∫
dRCMΦCM(RCM) (S38b)

In the case of bulk GeS in which we assume the exciton COM motion is free and can be

described by a plane wavefunction, the OS is rewritten as follows

f
αq

ñ,ℓ̃,m̃
=

2V

m0EX
ñ,ℓ̃,m̃

∣∣∣Ψrel
ñ,ℓ̃,m̃

(ρ = 0)
∣∣∣2 × |⟨uc,k |αq · p|uv,k⟩|2 . (S39)
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