Electronic supplementary information

Diblock Copolymer Pattern Protection by Silver

Cluster Reinforcement

Yusuf Bulut,^{a,b} Benedikt Sochor, ^a Constantin Harder, ^{a,b} Kristian Reck, ^c Jonas Drewes, ^c Zhuijun Xu, ^b Xiongzhuo Jiang, ^b Alexander Meinhardt, ^{d,e} Arno Jeromin, ^d Mona Kohantorabi, ^{a,d} Heshmat Noei, ^{a,d} Thomas F. Keller,^{d,e} Thomas Strunskus, ^c Franz Faupel, ^c Peter Müller-Buschbaum ^{b,f} and Stephan V. Roth ^{*a,g}

^{a.} Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.

- ^{b.} Technical University of Munich, TUM School of Natural Sciences, Department of Physics, Chair for Functional Materials, James-Franck-Str. 1, 85748 Garching, Germany.
- ^c Lehrstuhl für Materialverbunde, Insitut für Materialwissenschaft, Christian Albrechts-Universität zu Kiel, Kaiserstr. 2, 24143 Kiel, Germany.
- d. Centre for X-ray and Nano Science CXNS, Deutsches Elektronen-Synchtrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.
- ^{e.} Department of Physics, University of Hamburg, Notkestr. 9-11, 22607 Hamburg, Germany.
- f Heinz Maier-Leibnitz Zentrum (MLZ), Technische Universität München, Lichtenbergerstraße 1, 85748 Garching, Germany.
- ^{g.} KTH Royal Institute of Technology, Teknikringen 56-58, 100 44 Stockholm, Sweden.

*stephan.roth@desy.de

Figure S1: a) GISAXS scattering image of pristine PS-b-P4VP with a schmeaticlly drawn displaying the performed horizontal line cut and in b) is the horizontal line cut displayed and the corresponding fit.

Figure S2: (a) Distribution of Ag_{dcMS}:PS-b-P4VP Ag cluster to Ag cluster distance derived from the AFM Phase image (Figure S4d) together with a gaussian fit. b) Distribution of Ag_{dcMS}:PS-b-P4VP of Ag diameter derived from the AFM image (Figure S4d) together with a gaussian fit. (c) Distribution of Ag_{HiPIMS}:PS-b-P4VP Ag cluster to Ag cluster distance derived from the AFM image (Figure S4f) together with a gaussian fit. (d) Distribution of Ag_{dcMS}:PS-b-P4VP of Ag diameter derived from the AFM image (Figure S4f) together with a gaussian fit.

Figure S3: (a) Distribution of pristine PS-b-P4VP micelles to micelles distance derived from the FESEM image (Figure 1a) together with a gaussian fit. (b) Distribution of pristine PS-b-P4VP micelle diameter derived from the FESEM image (Figure 1a) together with a gaussian fit. (c) Distribution of pristine PS-b-P4VP micelles to micelles distance derived from the AFM image (Figure S4a) together with a gaussian fit. (d) Distribution of pristine PS-b-P4VP micelle diameter derived from the AFM image (Figure S4a) together with a gaussian fit.

Figure S4: AFM images of a) pristine PS-b-P4VP height, b) pristine PS-b-P4VP phase, c) Ag_{dcMS}:PS-b-P4VP height, d) Ag_{dcMS}:PS-b-P4VP phase, e) Ag_{HiPIMS}:PS-b-P4VP height and f) Ag_{HiPIMS}:PS-b-P4VP phase

Calculation of surface energy derived from the contat angle:

The surface energy is estimated from the measured contact angle using following equation:¹

$$\gamma_s = \frac{\gamma_l}{4} (1 + \cos \theta_c)^2$$

 γ_1 is denoted to the surfaces energy of ultrapure water being tabulated at 72.75*10⁻³ mN/m at 20°C and θ_c is the measured contact angle.^{1–3}

Figure S5: XRR of pristine PS-b-P4VP (pink) with corresponding fit (black).

Calculation of the cluster density:

The cluster density can be calculated assuming the geometrical model described by Schwartzkopf et. Al. using following equation being depanded on the correlated distance:⁴

$$\rho = \frac{2}{\sqrt{3}D^2}$$

Figure S6: In-situ evolution of Ag_{dcMS}:PS-b-P4VP (black) and Ag_{HiPIMS}:PS-b-P4VP (blue) in (a) distance, (b) cluster density. In between the vertical blue and black lines is a regime in which the data could not be fitted due to strong overlap between Ag cluster peak and micelle peak being in superposition. Violet bar indicates $\delta_{Ag} = 2 \text{ nm}$ of Ag_{dcMS}:PS-b-P4VP and Ag_{HiPIMS}:PS-b-P4VP showing same structural rearrangement.

Figure S7: (a) XPS spectra of the C1s edge of pristine, (b) Ag_{dcMS}:PS-b-P4VP and (c) Ag_{HiPIMS}:PSb-P4VP. (d) XPS spectra of the N1s edge of pristine, (e) Ag_{dcMS}:PS-b-P4VP and (f) Ag_{HiPIMS}:PSb-P4VP. (g) XPS spectra of O1s edge of Ag_{dcMS}:PS-b-P4VP and (h) Ag_{HiPIMS}:PS-b-P4VP.

References:

- 1 R. J. Good and L. A. Girifalco, J. Phys. Chem., 1960, 64, 561–565.
- 2 P. G. De Gennes, *Rev. Mod. Phys.*, 1985, **57**, 827–863.
- 3 N. B. Vargaftik, B. N. Volkov and L. D. Voljak, *J. Phys. Chem. Ref. Data*, 1983, **12**, 817–820.
- 4 M. Schwartzkopf, A. Hinz, O. Polonskyi, T. Strunskus, F. C. Löhrer, V. Körstgens, P. Müller-Buschbaum, F. Faupel and S. V. Roth, ACS Appl. Mater. Interfaces, 2017, 9, 5629–5637.