
  

S1 
 

Electronic Supplementary Information 

 

Size-dependent activity of carbon dots for photocatalytic H2 generation in 
combination with a molecular Ni cocatalyst 

 
 

Carla Casadevall,a Ava Lage,a Manting Mu,b Heather F. Greer,a Daniel Antón-García, a Julea N. Butt,c 
Lars J.C. Jeuken,d Graeme W. Watson,b Max García-Melchor,b,e* Erwin Reisnera* 

 
 
a. Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK. 
b. School of Chemistry, Trinity College Dublin, College Green, Dublin 2, Ireland. 
c. School of Chemistry and School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 

7TJ, UK. 
d. Leiden Institute of Chemistry, Leiden University, PO Box 9502,2300 RA, Leiden, The Netherlands. 
e. CRANN and AMBER Research Centres, College Green, Dublin 2, Ireland. 
† Corresponding authors: reisner@ch.cam.ac.uk and garciamm@tcd.ie 
 

 
 
 
 

  
  
Table of contents 

 

1. Synthesis and characterization of CDs ........................................................................................................ 2 

2. Tables .................................................................................................................................................................... 3 

3. Figures .................................................................................................................................................................. 6 

4. References ......................................................................................................................................................... 19 

End of Supporting Information .............................................................................................................................. 19 

 

  

Electronic Supplementary Material (ESI) for Nanoscale.
This journal is © The Royal Society of Chemistry 2023



  

S2 
 

1. Synthesis and characterization of CDs 
 

 

Scheme S1. Procedure for the synthesis of the carbon dots for this study. 
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2. Tables 
 

Table S1. Summary of separated fractions and sizes of the GF-SEC separated CDs. 

 GF-SEC fractions TEM particle size (nm) 

a-CD 

S1 >7.6 
S2 7.6 ± 0.8 
S3 6.6 ± 0.3 
S4 4.6 ± 0.4 
S5 3.9 ± 0.3 
S6 3.2 ± 0.1 
S7 3.1-2.3 ± 0.3 
S8 2.2 ± 0.1 
S9 2.0 ± 0.1 
S10 <2.0 
S11 <2.0 

g-CD 

S1 >6.1 
S2 6.1 ± 0.3 
S3 4.7 ± 0.3 
S4 4.0 ± 0.4 
S5 3.1 ± 0.4 
S6 3.0 ± 0.1 
S7 2.9 ± 0.1 
S8 2.7 ± 0.1 
S9 2 ± 0.1 
S10 <2.0 
S11 <2.0 

g-N-CD 

S1 >4.4 
S2 4.4 ± 0.2 
S3 3.8 ± 0.4 
S4 3.2 ± 0.4 
S5 3.1 ± 0.4 
S6 2.9 ± 0.4 
S7 2.1 ± 0.2 
S8 2.0 ± 0.1 
S9 <2.0 
S10 <2.0 
S11 <2.0 

Average size for CDs as synthesized are: i) 6.4 ± 2.1 nm for a-CD, ii) 3.2 ± 1.1 nm for g-CD and 3.0 ± 1.1 nm for g-N-CD. A 
HiLoad® 26/600 Superdex® 200 pg prepacked column (Cytiva) was used to purify the CDs in 20 mM Borate buffer (pH 8), and 
the column was eluted at a flow rate of 2 mL min−1. 
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Table S2. DLS and zeta potential measurements of the eluted size separated CDs. 

 TEM particle size (nm) DLS measured size (nm)a Zeta potential (mV) 

a-CD 

7.6 ± 0.8 130.6 ± 43.3 –19.4 ± 1.5 
6.6 ± 0.3 109.5 ± 19.0 –25.9 ± 1.6 
4.6 ± 0.4 89.9 ± 20.2 –23.2 ± 2.1 
2.2 ± 0.3 87.0 ± 33.1 –42.5 ± 2.4 

g-CD 

6.1 ± 0.3 465.6 ± 12.7 –38.5 ± 1.4 
4.7 ± 0.3 332.8 ± 14.1 –39.1 ± 1.4 
3.1 ± 0.4 10.9 ± 7.9 –50.0 ± 1.4 
2.7 ± 0.3 6.4 ± 3.1 –53.7 ± 1.3 
2 ± 0.1 2.8 ± 0.6 –52.7 ± 4.3 

g-N-CD 

4.4 ± 0.2 198.4 ± 83.6 –21.0 ± 1.3 
3.8 ± 0.4 116.3 ± 17.7 –30.7 ± 1.6 
3.2 ± 0.4 65.1 ± 28.1 –37.2 ± 0.9 
2.9 ± 0.4 56.3 ± 27.4 –40.2 ± 1.5 

Average zeta potential for CDs as synthesized are: i) –17.0 ± 1.0 mV for a-CD, ii) –26.8 ± 1.4 mV for g-CD and –23.0 ± 1.0 mV 
for g-N-CD. A HiLoad® 26/600 Superdex® 200 pg prepacked column (Cytiva) was used to purify the CDs in 20 mM Borate buffer 
(pH 8), and the column was eluted at a flow rate of 2 mL min−1. a It is worth mentioning that CD solutions, in 20 mM Borate buffer 
(pH 8), tend to aggregate in the DLS cuvette while measuring since there is no stirring, so the measures should be taken as an 
idea of the general trend observed for the particle size decrease, not the real particle diameter.  

 
 
Table S3. Singlet vertical electronic excitation energy, oscillator strengths (f), CI coefficients and primary character (|CI| > 0.2) 
based on the frontier molecular orbitals calculated for the 4×4-1L system. Only transitions with finite oscillator strengths are shown.  

Transition Energy f Composition CI coefficients 

S0➝S1 1.64 eV 
754.06 nm 

0.7459 HOMO – LUMO 0.69925 

S0➝S4 3.04 eV 
407.38 nm 

0.0008 HOMO – LUMO+3 
HOMO-3 – LUMO 

0.50306 
0.45064 
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Table S4. Singlet vertical electronic excitation energy, oscillator strengths (f), CI coefficients and primary character (|CI| > 0.2) 
based on the frontier molecular orbitals calculated for the 4×4-4L system. Only transitions with finite oscillator strengths are shown.  

Transition Energy f Composition CI coefficients 

S0➝S2 1.45 eV 
857.25 nm 

0.0171 HOMO – LUMO+1 
HOMO-2 – LUMO  
HOMO – LUMO 
HOMO-1 – LUMO+1 

0.47753 
0.29614 
0.26071 
0.23007 

S0➝S4 1.53 eV 
812.68 nm 

0.2662 HOMO – LUMO 
HOMO-1 – LUMO+1 
HOMO – LUMO+2 
HOMO-3 – LUMO+1 

0.49871 
0.33040 
0.23302 
0.21407 

S0➝S5 1.60 eV 
775.21 nm 

0.3021 HOMO-3 – LUMO+1 
HOMO-2 – LUMO 
HOMO – LUMO 
HOMO – LUMO+2 

0.45178 
0.29778 
0.29049 
0.24075 

S0➝S8 1.70 eV 
728.45 nm 

0.0308 HOMO-1 – LUMO+3 
HOMO-2 – LUMO+2 
HOMO-2 – LUMO 
HOMO-1 – LUMO+1 

0.47974 
0.31294 
0.30935 
0.22340 

S0➝S10 1.90 eV 
653.85 nm 

1.0584 HOMO-3 – LUMO+3 
HOMO-2 – LUMO+2 
HOMO-1 – LUMO+1 

0.47556 
0.40227 
0.26220 

S0➝S12 2.24 eV 
552.85 nm 

0.0075 HOMO+1 – LUMO+2 
HOMO – LUMO+2 
HOMO-3 – LUMO+1 
HOMO-1 – LUMO+3 
HOMO – LUMO 
HOMO-3 – LUMO+3 

0.33207 
0.32994 
0.26060 
0.26044 
0.25213 
0.25401 
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3. Figures 
     

 
Figure S1. (a) IR and b) UV-vis characterization of the synthesized a-CD, g-CD and g-N-CD in H2O at 298 K. 

  

 
Figure S2.  Powder X-Ray diffraction (XRD) patters of g-N-CD (black line), g-CD (blue line) and a-CD (red line) (a), and emission 
spectra of the synthesized (b) a-CD, (c) g-CD and (d) g-N-CD in H2O at 298 K at different excitation wavelengths (see legends). 
Note: The powder XRD pattern for g-N-CD and g-CD show a broad but well-defined peak consistent with a nanocrystalline 
graphitic structure (graphitic core). For g-N-CD the peak is centered at ca. 27.0° 2θ, which corresponds to the (002) reflection in 
graphitic structures and a lattice spacing of 3.25 Å (d002 = 3.35 Å in bulk graphite).[1-2] For g-CD there is a well-defined peak (200) 
centered at 26.8° 2θ (lattice spacing of 3.29 Å) confirming the nanocrystalline graphitic core in g-CD. a-CD do not display this 
feature, in agreement with their predominant amorphous carbon core.[3]  
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Figure S3. TEM images and the distribution of particle sizes of the synthesized (a) a-CD, (b) g-CD and (c) g-N-CD bulk materials 
before purification. 

 

 
Figure S4. GF-SEC traces of the separation of a-CD, g-CD and g-N-CD in (a) tris·HCl buffer pH 7.3 (100 mM) NaCl (100 mM) 
and (b) borate buffer pH 8 (20 mM) using a Superdex 200 pg Increase 10/300 GL SEC column. Broad GF traces with tris·HCl 
buffer pH 7.3 (100 mM) NaCl (100 mM) suggest interaction between the column matrix and the CDs. Note: According to SEC 
principles, a-CDs should elute earlier than g-CD and g-N-CD due to their bigger size. The elution times can therefore be explained 
by the stronger interactions between the a-CDs and the dextran gel matrix compared to the other CDs, even when using borate 
buffer as eluent. Importantly, these CD-gel interactions do not change for the same type of CDs with different sizes and we can 
still employ GF-SEC for size-separation. This is supported by our TEM analyses and confirms separation between 2 and 7.6 nm, 
within the calculated pore size of the resin. 
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Figure S5. (a) Scale-up GF-SEC traces of the separation of g-CD in borate buffer pH 8 (20 mM) using a Superdex 200 pg Hi 
Load 26/600 GL. (b) UV-vis and (c) emission spectra (lex = 405 nm) of the GF SEC separated fractions of g-CD (ranging from > 
6.1 to < 2 nm size as described in the legend) in borate buffer pH 8 (20 mM) at 25 ºC. 

 

 

Figure S6. TEM images and corresponding FFT pattern of the bulk g-CD (a) and the different size-separated fractions (b-f). 
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Figure S7. Scale-up GF-SEC traces of the separation of a-CD in borate buffer pH 8 (20 mM) using a Superdex 200 pg Hi Load 
26/600 GL (a), TEM images (b), UV-vis spectra (c), and emission spectra (lex = 405 nm) (d) of the separated fractions (0.14 
mg·mL-1 concentration). Color codes correspond to the color band associated to each fraction. Red lines in the TEM images show 
an individual particle. 
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Figure S8. TEM images and corresponding FFT pattern of the bulk a-CD (a) and the different size-separated fractions (b-h). 

 

 
Figure S9. Scale-up GF-SEC traces of the separation of g-N-CD in borate buffer pH 8 (20 mM) using a Superdex 200 pg Hi Load 
26/600 GL (a), TEM images (b), UV-vis spectra (c), and emission spectra (lex = 405 nm) (d) of the separated fractions (0.14 
mg·mL-1 concentration). Color codes correspond to the color band associated to each fraction. 
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Figure S10. TEM images and FFT pattern of the bulk g-N-CD (a) and the different size-separated fractions (b-h). 

 

 

 

Figure S11. Absorption peak energy as function of the CDs size for (a), a-CD (b), g-CD and (c) g-N-CD. 
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Figure S12. Excitation (lem = 460 nm) and emission spectra (lex = 360 nm) with a magnified region of the emission spectra of the 
separated fractions (a) a-CD, (b) g-CD and (c) g-N-CD.  

 

 

 
Figure S13. Photoluminescent (PL) peak energy shift as function of the CDs size at 360 and 405 nm excitation for (a), a-CD (b), 
g-CD and (c) g-N-CD. 
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Figure S14. FTIR spectra of the bulk CDs (top spectra of a, b and c) and of some of the size separated fractions (from bigger to 
smaller) for (a), a-CD (b), g-CD and (c) g-N-CD. 

 

 
Figure S15. Schematic representation of the (a) AA, (b) ABA, and (c) ABC packings in a 2×2 graphene model system. 
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Figure S16. Calculated optical adsorption spectra for the 4×4-1L system. 

 

 
Figure S17. Calculated optical adsorption spectra for the 4×4-4L system. 
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Figure S18. Frontier molecular orbitals involved in the TD-DFT vertical excitations of 4×4-1L.  
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Figure S19. Frontier molecular orbitals involved in the TD-DFT vertical excitations of 4×4-4L. 
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Figure S20. Simulated absorption spectra of graphene systems with varying sizes and two atomic layers.  

 

 
Figure S21. Simulated absorption spectra of the systems containing 2×2 (a) and 3×3 (b) graphene sheets with different number 
of layers. 

 

 
Figure S22. Side view representation of the isosurfaces (isovalue = 0.02 a.u.) of the LUMO of the 2×2 system with different 
number of layers. The calculated HOMO-LUMO gap (∆EHOMO-LUMO) is also provided. 
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Figure S23. Side view representation of the isosurfaces (isovalue = 0.02 a.u.) of the LUMO of the 3×3 system with different 
number of layers. The calculated HOMO-LUMO gap (∆EHOMO-LUMO) is also provided. 

 

 
Figure S24. Side view representation of the isosurfaces (isovalue = 0.02 a.u.) of the LUMO of the 4×4 system with different 
number of layers. The calculated HOMO-LUMO gap (∆EHOMO-LUMO) is also provided. 

 

 
Figure S25. (a) H2 evolution studies with the optimum size for each type of CD and control studies without NiP, using NiP without 
CDs, and using NiCl2 as control. (b) Experiments with different concentration of EDTA for the selected best and worst performing 
CDs. Catalytic conditions: a-CD, g-CD and g-N-CD (0.5 mg), NiP (50 nmol), NiCl2 (30 nmol) and EDTA (0.1 M, pH 6, unless 
otherwise indicated) in water irradiation at 405 ± 10 nm for 24 h, at 25 ºC under N2 atmosphere. 
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