Supporting Information

A new two-dimensional luminescent Ag₁₂ cluster-assembled material and its catalytic activity for reduction of hexacyanoferrate (III)

Riki Nakatani,[†]^a Sourav Biswas,[†]^a Tsukasa Irie,^a Jin Sakai,^a Daisuke Hirayama,^a Tokuhisa Kawawaki,^a Yoshiki Niihori,^b Saikat Das^{*b} and Yuichi Negishi^{*a,b}

^aDepartment of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.

^bCarbon Value Research Center, Research Institute for Science & Technology, Tokyo University of Science, Tokyo 162-8601, Japan.

†These authors contributed equally.

*Corresponding Authors S.D.: saikatdas@rs.tus.ac.jp Y.N.: negishi@rs.tus.ac.jp

Table of Contents

Name	Description	Page No.	
	General information	S3-S4	
Table S1	Crystal data and structure refinement parameters of TUS 3		
Table S2	Time-correlated single-photon counting (TCSPC) measurement		
Table S3	Comparison of the catalytic activity		
Fig. S1	Optical microscope image of TUS 3 crystals		
Fig. S2	Ag ₁₂ core architecture		
Fig. S3	Topology of TUS 3		
Fig. S4	Separation distance between the layers in TUS 3	S10	
Fig. S5	Presence of the solvent molecules inside the pores of TUS 3	S11	
Fig. S6	BET plot for TUS 3	S12	
Fig. S7	Pore size distribution for TUS 3	S13	
Fig. S8	High resolution binding energy plot of each element obtained	S14	
	from the XPS measurement of TUS 3		
Fig. S9	TGA profile of TUS 3	S15	
Fig. S10	Matched PXRD patterns of crystalline TUS 3 crystals and even	S16	
	after water exposure		
Fig. S11	UV-Vis absorbance of TUS 3 in water, NMP and linker in NMP	S17	
Fig. S12	PL emission of TUS 3 in solid-state	S18	
Fig. S13	Effect of TUS 3 in the reaction when 0.5 nM TUS 3 was added	S19	
Fig. S14	FT-IR spectra and PXRD of TUS 3 and after different cycles of	S20	
	catalysis		
Fig. S15	HRTEM images of TUS 3 before and after catalysis	S21	
Fig. S16	EDS comparison of TUS 3 as synthesized and after the 4 th cycle	S22	
	of catalysis		
	References	S23	

General information

Reagents

All reagents and solvents were obtained from commercial suppliers and used as received, unless otherwise noted. Hexacyanoferrate (III) was purchased from Sigma-Aldrich. Sodium borohydride and *tert*-butyl mercaptan were provided by Tokyo Chemical Industry Co., Ltd. Silver trifluoroacetate (CF₃COOAg) was provided by FUJIFILM Wako Pure Chemical Corporation. Silver nitrate (AgNO₃), toluene, ethanol, acetonitrile, and methanol were purchased from Kanto Chemical Co., Inc. *N*-methyl-2-pyrrolidone (NMP) was purchased from Tokyo Chemical Industry Co., Ltd.

Characterization

For the single-crystal X-ray diffraction (SCXRD) data collection, the single crystal was immersed in the cryoprotectant Parabar 10312 (Hampton Research, 34 Journey, Aliso Viejo, CA 92656-3317 USA) and mounted on a Dual-Thickness MicroMounts[™] (MiTeGen, LLC, Ithaca, NY, USA). A Bruker D8 QUEST diffractometer was used to acquire the diffraction data for the single crystals using monochromated Mo K α radiation ($\lambda = 0.71073$ Å). The crystal structure was resolved using Apex3 Bruker Software Suite.¹ Powder X-ray diffraction (PXRD) data were collected using a Rigaku X-ray diffractometer with Cu K α radiation ($\lambda = 1.5418$ Å) operated at 40 kV and 40 mA. The data collection range was from $2\theta = 5-30^{\circ}$ with a step size of 0.02° and scan speed of 0.292° per min. Nitrogen sorption isotherm measurements were conducted at 77 K with a Quantachrome's Quadrasorb evo gas sorption analyzer. The sample was degassed for 8 h at 50 °C prior to the adsorption measurements. The specific surface area was determined by the Brunauer-Emmett-Teller (BET) method within the relative pressure (P/P_0) range of 0.02-0.1. The pore size distribution was evaluated from the adsorption data via the non-local density functional theory (NLDFT). Fourier transform infrared (FT-IR) spectra were collected on a JASCO FT/IR-4600 spectrometer using KBr pellets from 4000 to 400 cm⁻¹ with a resolution of 0.964233 cm⁻¹. Thermogravimetric analysis (TGA) curve was recorded on a Bruker TG-DTA2010SA instrument under nitrogen atmosphere from room temperature to 800 °C with a heating rate of 10 °C min⁻¹ and nitrogen flow rate of 50 mL min⁻¹. The optical microscope images were acquired with an Olympus SZX7 stereo microscope. Scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDS) analysis was tested on a JEOL JSM-7001F/SHL field emission scanning electron microscope with accelerating voltage of 15 kV. High-resolution transmission electron microscopy (HRTEM) images were obtained at 80 kV with a JEOL JEM-2100F microscope. X-ray photoelectron spectroscopy (XPS) experiments were performed on a JPS-9-1-MC electron spectrometer (JEOL, Tokyo, Japan). The X-rays from the Mg-Kα line (1253.6 eV) were used for excitation and all the binding energies were referenced to the neutral C 1s peak at 290.6 eV. The UV-Vis absorption spectra were recorded on a JASCO V-770 spectrophotometer. The photoluminescence (PL) spectra were acquired using an Edinburgh Instruments (EI) FLS1000 spectrofluorometer, equipped with a continuous (450 W) xenon lamp. PL decay curves were measured according to a time-correlated single-photon counting (TCSPC) technique with a fluorescent lifetime spectrometer (FLS1000) under the excitation of 375 nm picosecond laser.

Synthesis procedures

Synthesis of silver *tert*-butylthiolate (AgS'Bu). AgS'Bu was synthesized following the literature procedure.^{2,3}

Catalysis experiment

In order to investigate the catalytic activity, we conducted our study using solvents prepared in a deionized water medium with a pH of 7.1 at room temperature. For our experiments, we utilized stock solutions with specific concentrations. The stock solution of $[K_3Fe(CN)_6]$ had a concentration of 10^{-3} M, while NaBH₄ was prepared at a concentration of 10^{-2} M. To begin the experiment, we measured a precise amount of the solution in a 3 mL cuvette. In order to ensure accurate results, we appropriately diluted the solution. Furthermore, we introduced **TUS 3** into the cuvette, adjusting the concentration to achieve the desired total volume. By following this meticulous procedure, we were able to effectively evaluate the catalytic activity under the specified conditions.

Identification code	TUS 3		
Empirical formula	$C_{114}H_{120}Ag_{12}F_{18}N_{18}O_{24}S_{6}$		
CCDC number	2277175		
Formula weight	3955.07		
Temperature/K	273.15		
Crystal system	trigonal		
Space group	R-3		
a/Å	24.1539(5)		
b/Å	24.1539(5)		
c/Å	20.9231(9)		
α/°	90		
β/°	90		
$\gamma/^{\circ}$	120		
Volume/Å ³	10571.4(6)		
Ζ	3		
$\rho_{\text{calc}}/\text{g cm}^{-3}$	1.862		
μ/mm^{-1}	1.809		
F(000)	5832		
Crystal size/mm ³	0.24 imes 0.22 imes 0.2		
Radiation	MoKα (λ = 0.71073)		
2Θ range for data collection/°	2.177 to 29.535°		
Index ranges	$-32 \le h \le 31, -32 \le k \le 31, -27 \le l \le 28$		
Reflections collected	47476		
Independent reflections	$6329 [R_{int} = 0.0482]$		
Data/restraints/parameters	6329/628/352		
Goodness-of-fit on F ²	1.042		
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0357, wR_2 = 0.088$		
Final R indexes [all data]	$R_1 = 0.0441, wR_2 = 0.0962$		
Largest diff. peak/hole / e Å ⁻³	1.639/-1.300		

 Table S1. Crystal data and structure refinement parameters of TUS 3.

 Table S2. Parameters obtained from time-correlated single-photon counting (TCSPC)

 measurement.

Sample	Component	τ (ns)	A	f
TUS 3	1	0.4943	0.856	0.552
	2	2.3917	0.144	0.448

Fitting parameter is 1.1370. τ represents the lifetime of each individual component, A represents the amplitude, and f determines the fractional population of each component.

Table S3. Comparison of the catalytic activity by keeping the reaction conditions same.

Sample	Half-life (<i>t</i> _{1/2})	
	(\$)	
[AgS ^{<i>t</i>} Bu] _{<i>n</i>}	No catalytic activity	
Ag nanoparticles (~ 10 nm)	207	
Au nanoparticles (~ 10 nm)	180	
TUS 3	14	

Fig. S1 Optical microscope image of TUS 3 crystals.

Fig. S2 (a) Three different planes of Ag(I) atoms in Ag_{12} cluster node, (b) hollow cuboctahedron-like geometry of Ag_{12} when connecting all planes together.

Fig. S3 kgd (kagome dual) topology of TUS 3.

Fig. S4 Separation distance between the layers in TUS 3.

Fig. S5 Presence of the solvent molecules inside the pores of TUS 3 created by the linker molecules.

Fig. S6 BET plot for TUS 3.

Fig. S7 Pore size distribution for TUS 3.

Fig. S8 High resolution binding energy plot of each element obtained from the XPS measurement of TUS 3.

Fig. S9 TGA profile of TUS 3 under N_2 atmosphere.

Fig. S10 (a) Matched PXRD patterns of crystalline **TUS 3** crystals and even after water exposure (b) PXRD patterns of **TUS 3** after immersed in different solvent media.

Fig. S11 UV-Vis absorbance of TUS 3 in water, NMP and linker in NMP.

Fig. S12 PL emission of TUS 3 in solid-state.

Fig. S13 Effect of TUS 3 in the reaction when 0.5 nM TUS 3 was added.

Fig. S14 (a) FT-IR spectra and (b) PXRD patterns of TUS 3 and after different cycles of catalysis.

Fig. S15 HRTEM image of **TUS 3** (a) before and (b) catalysis. The insets show the corresponding selected area electron diffraction (SAED) patterns. Lattice fringe correspond to (104) plane.

Fig. S16 EDS comparison of TUS 3 as synthesized and after the 4th cycle of catalysis.

References

- 1. Bruker APEX3, v2019.1–0, Bruker AXS Inc., Madison, WI, USA, 2019.
- B. K. Teo, Y. H. Xu, B. Y. Zhong, Y. K. He, H. Y. Chen, W. Qian, Y. J. Deng and Y. H. Zou, *Inorg. Chem.*, 2001, 40, 6794-6801.
- S. Das, T. Sekine, H. Mabuchi, S. Hossain, S. Das, S. Aoki, S. Takahashi and Y. Negishi, *Chem. Commun.*, 2023, 59, 4000-4003.