# **Supplementary Information**

# Carbon Dots-Functionalized Extended Gate Organic Field Effect

## **Transistors-Based Biosensors for Low Abundance Proteins**

Yanmin Zhang,<sup>a</sup> Chenfang Sun,<sup>b</sup> Yuchen Duan,<sup>a</sup> Shanshan Cheng<sup>\*a</sup> and Wenping Hu<sup>a,c,d</sup>

<sup>a.</sup> Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences School of Science, Tianjin University, Tianjin 300072, China.

<sup>b.</sup> Tianjin Key Laboratory of Drug Targeting and Bioimaging, Life and Health Intelligent Research Insitute, Tianjin University of Technology, Tianjin 300384, China.

<sup>c.</sup> Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China.

<sup>d.</sup> Beijing National Laboratory for Molecular Science, Key Laboratory of Organic Solids, Institution of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

#### 1. Synthesis process of polymer PDBT-co-TT.

The DPP-based polymer PDBT-co-TT was synthesized via Stille coupling polymerization.<sup>1</sup>



**Fig. S1** Synthesis and characterization of PDBT-*co*-TT polymer. (a) Stille coupling polymerization reaction equation. (b) XRD characterization of polymers. (c) UV/vis spectroscopic characterization of polymers.

## 2. Synthesis process and characterization of carbon dots.



Fig. S2 Synthesis route of CDs material.



Fig. S3 Characterization of CDs. (a-c) High-resolution spectra of  $C_{1s}$  (a),  $S_{2p}$  (b), and  $N_{1s}$  (c) peaks of the CDs.



Fig. S4 Contact angle measurement before and after self-assembled of CDs in extended gate.



## 3. Related characterization of the EG-OFET-based biosensors.

Fig. S5 Electrochemical performances of EG-OFETs (a) The relative change in mobility during 50 consecutive testing cycles of EG-OFET. (b) The relative change in  $I_{on}/I_{off}$  ratio during 50 consecutive testing cycles of EG-OFET.



Fig. S6 Change of  $I_{SD}$  electrical signals before and after incubation with CEA.

| Biosensor            | Technique               | Design                                                                 | LoD                                                                                         | Range                 | Ref |
|----------------------|-------------------------|------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------|-----|
| Electrochemical      | EIS                     | Graphene/PEDOT:PSS<br>modified paper<br>electrode                      | 0.45 ng/mL<br>in standard<br>buffer<br>solutions;<br>1.06<br>ng/mL in<br>human<br>serum     | 0.77–<br>14<br>ng/mL  | 2   |
|                      | DPV                     | Tetrahedral DNA<br>nanostructures and<br>catalytic hairpin<br>assembly | 0.04567<br>pg/mL                                                                            | 1 -<br>30000<br>pg/mL | 3   |
| Photoelectrochemical | FL                      | Polydopamine<br>nanosphere@silver<br>nanocluster system                | 5.6 nM                                                                                      | 0-<br>1000<br>nM      | 4   |
|                      |                         | Polydopamine-coated<br>upconversion<br>nanoparticles                   | 0.031<br>ng/mL in<br>aqueous<br>solution;<br>0.055<br>ng/mL in<br>human<br>serum<br>samples | 0.1-<br>100<br>ng/mL  | 5   |
| ELISA                | Spectroscopic detection | "Carrier-free"<br>nanoparticles                                        | 0.005<br>ng/mL                                                                              | 0.005<br>- 1<br>ng/mL | 6   |
| SERS                 | Raman<br>spectroscopy   | Silver nanoforest<br>substrate                                         | 0.02 pM                                                                                     | 100<br>μM-<br>0.1 nM  | 7   |

Table S1. Comparison between other biosensors for detecting CEA and the current work.

| Electrochemical | OFET | Carbon<br>functionalized | dots- | 2.7 pg/mL | 0.01-<br>1000<br>ng/mL | This<br>work |
|-----------------|------|--------------------------|-------|-----------|------------------------|--------------|
|-----------------|------|--------------------------|-------|-----------|------------------------|--------------|

Note: EIS = electrochemical impedance spectroscopy; DPV = differential pulse voltammetry; FL = fluorescence; ELISA = enzyme-linked immunosorbent assay; SERS = surface enhanced raman scattering :

#### 4. References

1 C. Sun, Y. X. Wang, M. Sun, Y. Zou, C. Zhang, S. Cheng and W. Hu, Biosens. Bioelectron., 2020, 164, 112251.

2 Y. K. Yen, C. H. Chao, and Y. S. Yeh, *Sensors* , 2020, **20**, 1372.

3 K. Zhang, M. Pei, Y. Cheng, Z. Zhang, C. Niu, X. Liu, J. Liu, F. Guo, H. Huang and X. Lin, J. Electroanal. Chem., 2021,

## **898**, 115635.

4 Y. Jiang, Y. Tang and P. Miao, *Nanoscale*, 2019, **11**, 8119-8123.

5 D. Yu, Z. Zha, S. Tang, Y. Qiu and D. Liu, J. Fluoresc., 2022, **32**, 1289-1297.

6 J. Sun, X. Ning, L. Cui, M. Ling, X. Xu and S. He, Analyst, 2020, 145, 6541-6548.

7 H. S. Kim, T. Lee, J. Yun, G. Lee and Y. Hong, *Microchem. J.*, 2021, **160**, 105632.