Electronic Supplementary Material (ESI) for Nanoscale. This journal is © The Royal Society of Chemistry 2023

Supplementary Information

for

Surface effects on the crystallization kinetics of amorphous antimony

Xueyang Shen,^{1#} Yuxing Zhou,^{1,2#} Hanyi Zhang,¹ Volker L. Deringer,² Riccardo Mazzarello,³ Wei Zhang^{1*}

 ¹Center for Alloy Innovation and Design (CAID), State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China.
²Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, Oxford, OX1 3QR, United Kingdom
³Department of Physics, Sapienza University of Rome, Rome, 00185, Italy

[#]These authors contributed equally to the paper

Email: wzhang0@mail.xjtu.edu.cn

Figure S1. The distribution of calculated SOAP kernel similarity values for the amorphous bulk model and the *r*-Sb supercell model annealed at 450 K. The red and blue line represent the relative frequency of amorphous and crystal Sb environments at the elevated temperature, respectively, with a given kernel similarity to the reference structure (the idealized *r*-Sb supercell model at 0 K). The computed per-atom similarity

k is given by averaging the similarities between the individual atom in the structural model and all the atoms in the reference structure.

Figure S2. Structural snapshots of (a) bulk model 2 and (b) bulk model 3 taken at various time points during the crystallization simulation. Two different perspectives are shown for model 2. Atoms are color-coded based on the calculated k similarity, which

quantifies the per-atom "crystallinity" with respect to the *r*-Sb supercell model.

Figure S3. Structural snapshots of (a) surface model 2S and (b) surface model 3S taken at various time points during the crystallization simulation. Atoms are color-coded based on the calculated k similarity as in Figure S2.