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Table S1. Components of the computed binding free energy (kcal mol−1) for the docked models 
of the HER2–G3P complexa

Model ∆Eele ∆Evdw ∆Enonpolar ∆Epolar ∆Gbind
1 438.8 ± 38.6 -118.9 ± 17.2 -14.6 ± 1.2 -397.1 ± 36.0 -91.8 ± 12.9
3 421.8 ± 23.9 -82.9 ± 6.4 -11.5 ± 0.6 -392.3 ± 21.4 -65.0 ± 4.9
4 388.9 ± 27.3 -100.4 ± 12.5 -14.2 ± 2.0 -348.5 ± 16.6 -74.3 ± 3.9
5 364.8 ± 33.0 -127.0 ± 24.4 -16.6 ± 2.9 -328.3 ± 35.0 -107.2 ± 21.1

a∆Eele, electrostatic potential energy; ∆Evdw, van der Waals potential energy; ∆Enonpolar, 
nonpolar contribution to solvation free energy; ∆Epolar, polar contribution to solvation free 
energy; ∆Gbind = ∆Eele + ∆Evdw + ∆Enonpolar + ∆Epolar, free energy change of binding.

Table S2. Statistical significance analysis of the MCF-7 and MCF-10A cell cytotoxicity at 
different concentrations (10 – 90%) of (a) WS2 and (b) PPN compared to control (cells only). 
The significance was fixed based on the Student’s t-test and indicated as * (p < 0.05), ** (p < 
0.01), *** (p < 0.001), and **** (p < 0.0001). Non-significant results were unmarked.

Table S3. Electrical properties of the cell-layer/nanostructure model utilized in electric-field 
simulations.

Material Isotropic resistivity
( cm)

SiO2 1.00 × 1016

ITO 1.00 × 10−4

PEG/ M13 0.10
Cell in DMEM 97.66

WS2 1.52
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Concentrations (%)(a) WS2

10 30 50 70 90
MCF-7 relative to 

control
*** *** **** ****

MCF-10A relative to 
control

** *** *** ****

Concentrations (%)(b) PPN
10 30 50 70 90

MCF-7 relative to 
control

*** **** ****

MCF-10A relative to 
control

* *** ****



Table S4. References for Figure S7. 
Ref No. Reference
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Table S6. References for Figure S9. 
Ref No. Reference Signal contrast (the ratio of the 

normalized signal of healthy 
cells to that of cancer cells)
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Lee, J. Z., & Lee, J. H. (2016). Microelectrical 
impedance spectroscopy for the differentiation 
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measurement at an optimal frequency. BioMed 
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Table S7. References for Figure S10. 
Ref No. Reference Incubation 

time (h)
Cell viability 

(%)
1 Song, Y., He, L., Chen, K., Wang, M., Yang, L., He, 

L., ... & Zhang, Z. (2020). Quantification of EGFR 
and EGFR-overexpressed cancer cells based on 
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analogue. RSC advances, 10(47), 28355-28364.

24 75

2 Yang, Y., Fu, Y., Su, H., Mao, L., & Chen, M. 
(2018). Sensitive detection of MCF-7 human breast 
cancer cells by using a novel DNA-labeled sandwich 
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3 Tran, H. L., Dega, N. K., Lu, S. M., Huang, Y. F., & 
Doong, R. A. (2022). Ultrasensitive detection of 
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24 85

4 Khan, F., Akhtar, N., Jalal, N., Hussain, I., 
Szmigielski, R., Hayat, M. Q., ... & Janjua, H. A. 
(2019). Carbon-dot wrapped ZnO nanoparticle-
based photoelectrochemical sensor for selective 
monitoring of H2O2 released from cancer cells. 
Microchimica Acta, 186, 1-9.

24 92
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Table S8. References for Figure S11. 
Ref No. Reference Reading time (ms)
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aerogel microspheres. Biosensors and Bioelectronics, 119, 156-
162.
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aminobenzoic acid) modified electrodes and porous-hollowed-
silver-gold nanoparticle labelling for prostate cancer detection. 
Sensors and Actuators B: Chemical, 296, 126657.

20

6 Dai, Y., Abbasi, K., DePietro, M., Butler, S., & Liu, C. C. (2018). 
Advanced fabrication of biosensor on detection of Glypican-1 
using S-Acetylmercaptosuccinic anhydride (SAMSA) 
modification of antibody. Scientific Reports, 8(1), 13541.

16.7

7 Heller, L., Todorovic, V., & Cemazar, M. (2013). Electrotransfer 
of single-stranded or double-stranded DNA induces complete 
regression of palpable B16. F10 mouse melanomas. Cancer gene 
therapy, 20(12), 695-700.
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Fig. S1. Root-mean square deviation of Cα atoms in MD simulations of the best-docked model 
of the G3P–HER2 complex.
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Fig. S2. Fourier transform infrared (FTIR) spectra of the WS2, LA–PEG–NHS, M13, and PPN.

Other research group’s material samples exhibit an FTIR spectrum with an absorption 

band at 1090 cm–1 due to the C-O-C stretching in the PEG, which indicates surface alteration.1,2 

Our material samples generated a similar spectrum, indicating that our results are consistent.
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Fig. S3. a) Electric field distribution of the cell-layer/nanostructure model. The WS2 and 
PEG/M13 was inserted in the middle of the cell layer, and a square-based reading stimulus was 
applied. b) Variation of the peak electric field in the cell layer for different reading amplitudes. 

Fig. S4. Microscopy images of MCF-7 cells incubated with a) 0%, b) 10%, c) 30%, and d) 
50% PPNs for 24 h.

For pristine cells and cells with a low PPN concentration, i.e., MCF-7 cells only and 

MCF-7 cells with 10% PPNs, the experiments disclose that the nanosheets can exhibit a low 

extent of cytotoxicity. In contrast, for cells with a high PPN concentration, viz., MCF-7 cells 

with 30% and 50% PPNs, when the material is added to the cells, the cytotoxicity of the 

nanosheet, which is connected with the surface process, can result in cell death above a 

specified amount, leading to a high extent of cytotoxicity.
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Fig. S5. Variation of the normalized viability of a) MCF-7 and b) MCF-10A cells incubated 
with 10% PPN for different times. The significance values were calculated using the Student’s 
t-test and were indicated as follows: non-significant (ns). Data are expressed as the standard 
error of the mean (SEM), where n = 6.

Fig. S6. a) Variations of the normalized impedance for different reading voltages. The cell 
population was fixed at 7  103 cells. b) Normalized impedance variation of the P–DBS for ×
different reading lengths. The significance values were calculated using the Student’s t-test and 
were indicated as follows: non-significant (ns), p ≤ 0.05 (*), and p ≤ 0.0001 (****). Data are 
expressed as the standard error of the mean (SEM), where n = 6. 
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1959: First 
antibody sensor 

(Ref. 1)

1962: First enzyme 
sensor (Ref. 2)

This work: Phage polymer 
nanosheet-based sensor

1990: First 
aptamer sensor 

(Ref. 3)

1993: First nucleic 
acid sensor (Ref. 4)

Fig. S7. Timeline of electrical-based cancer cell sensor development. The information for the 
references can be found in Table S4. 

Fig. S8. Comparison of the limit of detection of the P–DBS with that of current sensing 
methods. The information for the references can be found in Table S5.

Fig. S9. Comparison of the contrast between the cancer cell sample signal and the healthy cell 
sample signal of the P–DBS with that of current sensing systems. The information for the 
references can be found in Table S6. 
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Fig. S10. Comparison of the viability of MCF-7 or MCF-10A cells with the PPN with that of 
current cancer cells with electrical sensor-based nanostructures. The information for the 
references can be found in Table S7. 

Fig. S11. Comparison of the reading length of the P–DBS with that of current sensing methods. 
The information for the references can be found in Table S8. 
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