Nearly-room-temperature ferromagnetism and tunable anomalous

Hall effect in atomically thin Fe₄CoGeTe₂

Shaohua Yan,^{†,1,2} Hui-Hui He,^{†,1,2} Yang Fu,^{†,1,2} Ning-Ning Zhao,^{1,2} Shangjie Tian,^{3,1,2} Qiangwei Yin,^{1,2} Fanyu Meng,^{1,2} Xinyu Cao,⁴ Le Wang,^{1,2} Shanshan Chen,^{1,2} Ki-Hoon Son,⁵ Jun Woo Choi,⁵ Hyjin Ryu,⁵ Shouguo Wang,³ Xiao Zhang,^{*,4} Kai Liu,^{*,1,2} and Hechang Lei^{*,1,2}

¹Department of Physics and Beijing Key Laboratory of Optoelectronic Functional Materials & MicroNano Devices, Renmin University of China, Beijing 100872, China ²Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Renmin University of China, Beijing 100872, China

³School of Materials Science and Engineering, Anhui University, Hefei 230601, China ⁴State Key Laboratory of Information Photonics and Optical Communications & School of Science, Beijing University of Posts and Telecommunications, Beijing 100876, China

⁵Center for Spintronics, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea

Supplemental Information

[†]These authors contributed equally to this work.

*Correspondence and requests for materials should be addressed to

X. Z. (<u>zhangxiaobupt@bupt.edu.cn</u>), K. L. (email: <u>kliu@ruc.edu.cn</u>) or H. C. L. (email: <u>hlei@ruc.edu.cn</u>)

Supplementary Figures

Figure S1. Crystal structure and ferromagnetism of bulk F4CGT. a, XRD pattern of a F4CGT crystal measured using a Bruker D8 X-ray machine with Cu K_{α} radiation ($\lambda = 0.15418$ nm) at room temperature. The crystal surface is parallel to the *ab* plane, consistent with the layered structure of F4CGT. **b**, Temperature dependence of magnetization M(T) for bulk F4CGT crystals at $\mu_0 H = 0.1$ T with ZFC and FC modes when H//ab and H//c. The determined $T_{\rm C}$ s from the peak positions of dM/dT curve are about 341 K and 335 K for both field directions. **c** and **d**, Isothermal $M(\mu_0 H)$ curves at various temperatures when H//ab and H//c. Inset in **c** and **d** shows the enlarged part of hysteresis loops at low-field region, respectively. It can be seen that the easy magnetization direction is along the *ab* plane for all of temperatures.

Figure S2. Analysis of ordinary and anomalous Hall resistance. a, The Hall resistance R_{yx} as a function of the magnetic field at 2 K for the sample with t = 220 nm. R_0 is derived by linear fitting of data of magnetic field from 3 T to 5 T. b, The ordinary Hall resistance R_{yx}^{O} as a function of the magnetic field. c, Field dependence of anomalous Hall resistance R_{yx}^{A} .

Figure S3. The Arrott plots of F4CGT thin flakes at 2 K. a - f, the F4CGT think flakes with t = 2 nm, 4 nm, 8 nm, 12 nm, 20 nm, and 220 nm. The lines are the linear fits at high-field region.

Figure S4. Determining T_c by the analysis of Arrott plots. a - f, Arrott plots of the Hall resistance data for samples with t = 4 nm, 8 nm, 12 nm, 20 nm, 50 nm and 220 nm, respectively. Red lines are linear fits at high magnetic fields. The positive (negative) values of the intercepts to the R_{yx}^2 axis indicate the ferromagnetic (paramagnetic) state.

Figure S5. Angular dependence of planar Hall resistance $R_{yx}^{PHE}(\phi)$ with in-plane field $\mu_0 H = 5$ T for the bilayer F4CGT at different temperatures. The data is shifted for clarity.

Figure S6. MOKE measurements for F4CGT thin flakes. **a**, Optical microscope image of a mechanically exfoliated F4CGT flake on a SiO₂/Si substrate for $t \sim 10$ nm. **b**, Height profile along the green lines in **a** measured by AFM. **c**, **d**, Kerr rotation (θ_K) loops as a function of in-plane magnetic field at various temperatures for F4CGT thin flake with $t \sim 10$ nm (A sample in **a**). **e** – **h**, Corresponding results for F4CGT thin flake with $t \sim 15$ nm (B sample in **e**).

Figure S7. Hall resistance of samples with different *t*. a - f, R_{yx} as a function of magnetic field $\mu_0 H$ at various temperatures for the samples with t = 4 nm, 8 nm, 12 nm, 20 nm, 50 nm and 220 nm. The red and black lines represent the $R_{yx}(\mu_0 H)$ measured when decreasing and increasing fields.

Figure S8. Magnetic configurations in bilayer $Fe_4CoGeTe_2$ (F4CGT). a, AAstacking bilayer F4CGT with inter-layer antiferromagnetic coupling and intra-layer ferromagnetic couplings. b, AA-stacking bilayer F4CGT with inter-layer and intra-layer ferromagnetic couplings. c, AB-stacking bilayer F4CGT with inter-layer and intra-layer ferromagnetic couplings. d, AB-stacking bilayer F4CGT with inter-layer antiferromagnetic coupling and intra-layer ferromagnetic coupling. The black and red arrows represent the different spin directions, respectively.

Figure S9. Band structure of bulk F4CGT. The band structure was calculated with the spin-orbit coupling for the ground states (i.e., the in-plane FM state) of ABC-stacking bulk F4CGT with Co occupying at disordered Fe(1) site. The points in red and blue represent to the contributions from Co and Fe atoms, respectively.

Figure S10. Calculated σ_{xy} of AB-stacking bilayer F4CGT as a function of $E - E_F$.

Table S1. The calculated relative energies of the NM, FM, and AFM states of bilayer F4CGT (as shown in Figure S8) with respect to the FM states in AA-stacking bilayer F4CGT. The energies are averaged to the ones per formula unit (f.u.).

	8	1	
Energy/f.u.	NM	AFM	FM
AA-stacking	1.379 eV	2.155 meV	0
AB-stacking	1.396 eV	37.135 meV	35.835 meV