Supporting information

Se-doped-induced sulfur vacancy engineering of CuCo₂S₄ nanosheets for

enhanced electrocatalytic overall water splitting

Bianli Zhang, Xingyue Qian, Hui Xu, Lin Jiang, Jiawei Xia, Haiqun Chen* and Guangyu He*

Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis

and Green Manufacturing Collaborative Innovation Center, Changzhou University,

Changzhou, Jiangsu 213164, China

* Corresponding authors.

E-mail addresses: hegy@cczu.edu.cn (G. He), 0000-0001-5100-0324

chenhq@cczu.edu.cn (H. Chen), 0000-0001-7805-6395

1. Experimental section

1.1 Characterizations

X-ray diffraction (XRD) patterns were carried out on an X-ray diffractometer with Cu K α radiation ($\lambda = 1.54178$ Å). Raman spectra (Japan LabRAMHR evolution) of samples were collected on a Renishaw in Via-Reflex Raman microprobe. Electron paramagnetic resonance (EPR) spectra were acquired from a Bruker EMXPLUS A30. The morphologies of samples were analyzed by scanning electron microscopy (SEM, ZEISS, Germany) and transmission electron microscopy (TEM, JEOL Ltd., JEM-2100F) operated at 200 kV. X-ray photoelectron spectroscopy (XPS) was employed to obtain chemical valence of prepared catalysts on an XPS instrument (ESCALAB 250, Thermo, USA). The binding energy (BE) was measured by confirming the C-C peak at 284.8 eV. The BET surface area and pore size distributions were characterized by N₂ adsorption/desorption isotherms performed on Micromeritics ASAP2010C equipment in static measurement mode at -196 °C. All samples were degassed at 120 °C for 24 h before measurements. The specific surface area was studied based on the Brunauer-Emmett-Teller (BET) model. The inductively coupled plasma optical emission spectrometer (ICP-OES, 720ES, Agilent, US) was used to detect the contents of catalyst.

1.2 Electrochemical measurements

All electrochemical measurements were conducted at room temperature using CHI 760E electrochemical workstation with a standard three-electrode system. Hg/HgO and graphite rod were used as reference and counter electrodes in alkaline solution, respectively. For working electrode, 4.0 mg sample and 20 μ L Nafion (5 wt%) was dissolved into 480 μ L solution containing 360 μ L absolute ethanol and 120 μ L DI water. The obtained slurry was ultrasonicated for 1 h to acquire a uniform suspension. Then, 50 μ L above dispersion was dropped onto a carbon paper (1 x 1 cm²) and dried at room temperature. The linear sweep voltammetry (LSV) curves were collected at a scan rate of 5 mV s⁻¹ in 1 M KOH electrolyte. All polarization curves were corrected with 95% iR compensation with respect to the ohmic resistance of the solution. Electrochemical impedance spectra (EIS) were assessed at open-circuit potential with the frequency

range of 10⁶ to 10⁻¹ Hz. Long-term chronoamperometric tests were conducted at the corresponding potential.

Fig. S1 N_2 adsorption/desorption isotherms of $CuCo_2S_4$ and $CuCo_2S_{4-x}Se_x$.

Fig. S2 (a) SEM and (b) TEM images of CuCo₂S_{3.68}Se_{0.32} after OER test.

Fig. S3 XRD pattern of $CuCo_2S_{3.68}Se_{0.32}$ after a 24 h *i-t* test for OER.

Fig. S4 EPR spectra of $CuCo_2S_{3.68}Se_{0.32}$ before and after OER test.

Fig. S5 (a) S 2p, (b)Se 3d high resolution XPS spectral of $CuCo_2S_{3.68}Se_{0.32}$ after different activation time for OER.

Fig. S6 Typical cyclic voltammetry curves of $CuCo_2S_{4-x}Se_x$ in 1M KOH for OER at the scan rates from 20 to 200 mV s⁻¹.

Fig. S7 Chronoamperometric (*i*-*t*) curves of the $CuCo_2S_{3.68}Se_{0.32}$ electrode at current densities of 100 mA cm⁻² over 50 h.

Fig. S8 Cyclic voltammetry (CV) curves of CuCo₂S_{3.68}Se_{0.32} and CuCo₂S₄.

Fig. S9 Typical cyclic voltammetry curves of $CuCo_2S_{4-x}Se_x$ in 1M KOH for HER at the scan rates from 20 to 200 mV s⁻¹.

Fig. S10 Chronoamperometric (*i-t*) curves of the $CuCo_2S_{3.68}Se_{0.32}$ electrode at current densities of -100 mA cm⁻² over 50 h.

Fig. S11 Chronoamperometric (*i-t*) curves of the $CuCo_2S_{3.68}Se_{0.32}$ electrode at current densities of 100 mA cm⁻² over 50 h for overall water-splitting.

Sample	BET specific surface area (m ² g ⁻¹)
CuCo ₂ S ₄	4.56
$CuCo_2S_{3.84}Se_{0.16}$	7.68
CuCo ₂ S _{3.76} Se _{0.24}	9.06
$CuCo_2S_{3.68}Se_{0.32}$	11.25
$CuCo_2S_{3.6}Se_{0.4}$	10.13

Table S1. BET parameters of the as-prepared $\rm CuCo_2S_4$ and $\rm CuCo_2S_{3.68}Se_{0.32}$ samples.

Sample	S (wt %)	Se (wt %)
$CuCo_2S_{3.84}Se_{0.16}$	32.15	3.12
$CuCo_2S_{3.76}Se_{0.24}$	30.14	4.85
$CuCo_2S_{3.68}Se_{0.32}$	29.80	6.09
$CuCo_2S_{3.6}Se_{0.4}$	28.83	7.66

Table S2. The weight percentage content of elements in $CuCo_2S_{4-x}Se_x$ from ICP and elemental analysis data.

Table S3. Peak area ratios and Co atomic ratios of different samples in the XPS spectra.

Sample	Co ²⁺	Co ³⁺	Co ²⁺ /Co ³⁺
CuCo ₂ S ₄	0.49	0.51	0.96
$CuCo_2S_{3.84}Se_{0.16}$	0.51	0.49	1.04
$CuCo_2S_{3.76}Se_{0.24}$	0.52	0.48	1.08
CuCo ₂ S _{3.68} Se _{0.32}	0.62	0.38	1.63
$CuCo_2S_{3.6}Se_{0.4}$	0.51	0.49	1.04

Sample	Cu^+	Cu ²⁺	Cu^+/Cu^{2+}
CuCo ₂ S ₄	0.75	0.25	3.00
CuCo ₂ S _{3.84} Se _{0.16}	0.76	0.24	3.17
CuCo ₂ S _{3.76} Se _{0.24}	0.78	0.22	3.54
CuCo ₂ S _{3.68} Se _{0.32}	0.84	0.16	5.25
$CuCo_2S_{3.6}Se_{0.4}$	0.79	0.21	3.76

Table S4. Peak area ratios and Cu atomic ratios of different samples in the XPS spectra.

Table S5. Peak area ratios and S atomic ratios of different samples in the XPS spectra.

Sample	S 2p1/2	S 2p3/2	2p1/2/2p3/2
$CuCo_2S_4$	0.21	0.48	0.44
$CuCo_2S_{3.84}Se_{0.16}$	0.23	0.49	0.47
$CuCo_2S_{3.76}Se_{0.24}$	0.25	0.36	0.69
CuCo ₂ S _{3.68} Se _{0.32}	0.44	0.29	1.52
$CuCo_2S_{3.6}Se_{0.4}$	0.40	0.33	1.21

Sample	Co ²⁺	Co ³⁺	Co ³⁺ / Co ²⁺
CuCo ₂ S _{3.68} Se _{0.32}	0.62	0.38	0.59
$CuCo_2S_{3.68}Se_{0.32}-\eta_1$	0.53	0.47	0.89
$CuCo_2S_{3.68}Se_{0.32}\text{-}\eta_{10}$	0.48	0.52	1.08
CuCo ₂ S _{3.6} Se _{0.4} -cycle	0.41	0.59	1.44

Table S6. Peak area ratios and Co atomic ratios of different activation time in the XPS

 spectra.

Table S7. Peak area ratios and Cu atomic ratios of different activation time in the XPS

 spectra.

Sample	Cu ²⁺	Cu^+	Cu^{2+}/Cu^+
CuCo ₂ S _{3.68} Se _{0.32}	0.16	0.84	1.63
$CuCo_2S_{3.68}Se_{0.32}-\eta_1$	0.54	0.46	0.89
$CuCo_2S_{3.68}Se_{0.32}\text{-}\eta_{10}$	0.60	0.40	1.08
CuCo ₂ S _{3.6} Se _{0.4} -cycle	0.64	0.36	1.78

Catalyat	Mass loading	OER	Tafel slope	Ref.
Catalysi	(mg cm ⁻²)	$\eta_{10}(mV)$	(mV dec ⁻¹)	
CuCo ₂ S _{3.68} Se _{0.32}	0.4	230	58	This work
Ru-Co/ELCO	1.0	295	58.8	[1]
LiCoO _{1.8} Cl _{0.2}	0.4	270	55.4	[2]
Zn _{0.2} Co _{0.8} OOH	0.2	235	35.7	[3]
CoSe ₂ -D _{Fe} -V _{Co}	0.12	310	53.5	[4]
NiMoO ₄	0.26	351	69	[5]
LiCo _{0.8} Fe _{0.2} O ₂	0.23	340	50	[6]
KxCoFe _{0.12} O ₂	1.0	290	50	[7]
$La_{0.7}Sr_{0.3}CoO_{3\text{-}\delta}$	0.35	326	70.8	[8]
Fe ₂ Co-GNCL	0.26	350	70	[9]
CoFe-MOF	0.21	265	44.0	[10]
CoFe 2D MOFs	0.35	274	46.7	[11]

 Table S8. Comparison of OER performance for reported electrocatalysts.

Catalant	Mass loading OER		Tafel slope	Ref.
Catalyst	(mg cm ⁻²)	$\eta_{10}(mV)$	(mV dec ⁻¹)	
CuCo ₂ S _{3.68} Se _{0.32}	0.4	65	64	This work
Co/Co ₃ O ₄	0.85	~90	44	[12]
Co@C/NC	0.4	174.5	95.1	[13]
Co-Fe-P	0.29	86	66	[14]
CS@CNC NAs/CC	2.2	84	38	[15]
Cu-Co-P ₂₀	0.9	138	48	[16]
NCF-MOF	0.5	270	114	[17]
Co ₅₀ -Mo ₂ C-12	0.2	125	70.95	[18]
CN/CNL/MoS ₂ /CP	0.2	106	117	[19]
CoP@N,S-3D-GN	0.2	118	50	[20]
Ni _{0.67} Co _{0.33} /Ni ₃ S ₂ @NF	2.0	87	80	[21]

 Table S9. Comparison of HER performance for reported electrocatalysts.

Catalant	Mass loading	OWS P ₁₀	Ref.
Catalyst	(mg cm ⁻²)	(V)	
CuCo ₂ S _{3.68} Se _{0.32}	0.4	1.52	This work
ZnCoS-NSCNT/NP	1.0	1.59	[22]
Co2P/CoP@Co@NCNT	4.3	1.60	[23]
Co-NC@Ni ₂ Fe-LDH	1.8	1.55	[24]
Co/Mo ₂ C@C	0.34	1.59	[25]
NCS/NS-rGO	0.2	1.58	[26]
CMC/750SA	0.36	1.589	[27]
10:MoCo-VS ₂	2.0	1.54	[28]
Co-CoO/Ti ₃ C ₂ -MXene	2.0	1.55	[29]

 Table S10. Comparison of overall water splitting (OWS) performance with other

 bifunctional electrocatalysts.

*P₁₀: The required a cell voltage to drive a current density of 10 mA \cdot cm⁻².

References

- [1] X. Zheng, J. Yang, Z. Xu, Q. Wang, J. Wu, E. Zhang, S. Dou, W. Sun, D. Wang and Y. Li, Angew. Chem., Int. Ed., 2022, 61, e202205946.
- [2] J. Wang, S. J. Kim, J. Liu, Y. Gao, S. Choi, J. Han, H. Shin, S. Jo, J. Kim, F. Ciucci,
- H. Kim, Q. Li, W. Yang, X. Long, S. Yang, S. P. Cho, K. H. Chae, M. G. Kim, H. Kim and J. Lim, *Nat. Catal.*, 2021, **4**, 212-222.
- [3] Z.F. Huang, J. Song, Y. Du, S. Xi, S. Dou, J.M.V. Nsanzimana, C. Wang, Z.J. Xu and X. Wang, *Nat. Energy*, 2019, 4, 329-338.
- [4] Y. Dou, C. T. He, L. Zhang, H. Yin, M. Al-Mamun, J. Ma and H. Zhao, Nat. Commun., 2020, 11, 1664.
- [5] C. Ye, J. Liu, Q. Zhang, X. Jin, Y. Zhao, Z. Pan, G. Chen, Y. Qiu, D. Ye, L. Gu, G.
- I. N. Waterhouse, L. Guo and S. Yang, J. Am. Chem. Soc., 2021, 143, 14169-14177.
- [6] Y. Zhu, W. Zhou, Y. Chen, J. Yu, M. Liu and Z. Shao, *Adv. Mater.*, 2015, 27, 7150-7155.
- [7] Y. K. Sonia, M. K. Paliwal and S. K. Meher, *Sustain. Energy Fuels*, 2021, 5, 973-985.
- [8] Y. Lu, A. Ma, Y. Yu, R. Tan, C. Liu, P. Zhang, D. Liu and J. Gui, ACS Sustainable Chem. Eng., 2019, 7, 2906-2910.
- [9] Y. S. Wei, L. Sun, M. Wang, J. Hong, L. Zou, H. Liu, Y. Wang, M. Zhang, Z. Liu,
- Y. Li, S. Horike, K. Suenaga and Q. Xu, Angew. Chem., Int. Ed., 2020, 59, 16013-16022.

- [10] Z. Zou, T. Wang, X. Zhao, W.-J. Jiang, H. Pan, D. Gao and C. Xu, ACS Catal.2019, 9, 7356-7364.
- [11] M. Cai, Q. Liu, Z. Xue, Y. Li, Y. Fan, A. Huang, M. R. Li, M. Croft, T. A. Tyson,Z. Ke and G. Li, *J. Mater. Chem. A*, 2020, 8, 190-195.
- [12] X. Yan, L. Tian, M. He and X. Chen, *Nano Lett.*, 2015, **15**, 6015-6021.
- [13] Q. Wang, K. Cui, D. Liu, Y. Wu and S. Ren, *Energy Fuels*, 2022, 36, 1688-1696.
- [14] J. Chen, J. Liu, J. Q. Xie, H. Ye, X. Z. Fu, R. Sun and C. P. Wong, *Nano Energy*, 2019, 56, 225-233.
- [15] F. Tian, S. Geng, L. He, Y. Huang, A. Fauzi, W. Yang, Y. Liu and Y. Yu, Chem. Eng. J., 2021, 417, 129232.
- [16] Y Y. S. Park, W. S. Choi, M. J. Jang, J. H. Lee, S. Park, H. Jin, M. H. Seo, K. H.
- Lee, Y. Yin, Y. Kim, J. Yang and S. M. Choi, *ACS Sustainable Chem. Eng.*, 2019, 7, 10734-10741.
- [17] W. Ahn, M. G. Park, D. U. Lee, M. H. Seo, G. Jiang, Z. P. Cano, F. M. Hassan and Z. Chen, *Adv. Funct. Mater.*, 2018, 28, 1802129.
- [18] Y. Ma, M. Chen, H. Geng, H. Dong, P. Wu, X. Li, G. Guan and T. Wang, Adv. Funct. Mater., 2020, 30, 2000561.
- [19] J. Dong, X. Zhang, J. Huang, J. Hu, Z. Chen and Y. Lai, *Chem. Eng. J.*, 2021, 412, 128556.
- [20] C. Karaman, O. Karaman, N. Atar and M. L. Yola, *Electrochimica Acta*, 2021, 380, 138262.

[21] Z. Wu, Y. Feng, Z. Qin, X. Han, X. Zheng, Y. Deng and W. Hu, Small, 2022, 18, 2106904.

- [22] Z. Yu, Y. Bai, S. Zhang, Y. Liu, N. Zhang and K. Sun, J. Mater. Chem. A, 2018,
 6, 10441-10446.
- [23] D. Fa, Y. Tao, X. Pan, D. Wang, G. Feng, J. Yuan, Q. Luo, Y. Song, X. J. Gao, L.Yang, S. Lei and W. Hu, *Angew Chem. Int. Ed.*, 2022, 61, e202207845.
- [24] T. Guo, L. Chen, Y. Li and K. Shen, *Small*, 2022, 18, 2107739.
- [25] S. Yuan, M. Xia, Z. Liu, K. Wang, L. Xiang, G. Huang, J. Zhang and N. Li, *Chem. Eng. J.*, 2022, **430**, 132697.
- [26] H. Li, L. Chen, P. Jin, Y. Li, J. Pang, J. Hou, S. Peng, G. Wang and Y. Shi, Nano Res., 2022, 15, 950-958.
- [27] W. Yaseen, M. Xie, B. A. Yusuf, Y. Xu, N. Ullah, M. Rafiq, A. Ali and J. Xie, *Appl. Surf. Sci.*, 2022, **579**, 152148.
- [27] V. K. Singh, U. T. Nakate, P. Bhuyan, J. Chen, D. T. Tran and S. Park, J. Mater. Chem. A, 2022, 10, 9067-9079.
- [29] D. Guo, X. Li, Y. Jiao, H. Yan, A. Wu, G. Yang, Y. Wang, C. Tian and H. Fu, Nano Res., 2022, 15, 238-247.