Supplementary Information for

MOF-based heterogeneous catalysis in continuous flow via. incorporation onto polymer based spherical activated carbon supports

Anthony Griffiths, ^a Sarah L. Boyall, ^a Pia Müeller, ^a John P. Harrington, ^b Anna M. Sobolewska, ^c William R. Reynolds, ^c Richard A. Bourne, ^{a,d} Kejun Wu, ^e Sean M. Collins, ^d Mark Muldowney ^c and Thomas W. Chamberlain ^{*a}

^a Institute of Process Research and Development, School of Chemistry, School of Chemical and Process Engineering, University of Leeds, Leeds, UK

^b Leeds Electron Microscopy And Spectroscopy centre, LEMAS, Bragg Centre for Materials Research, University of Leeds, Leeds, LS2 9JT.

^c Sterling Pharma Solutions Limited, Dudley, Cramlington, Northumberland NE23 7QG, U.K.

^d School of Chemical and Process Engineering and School of Chemistry, University of Leeds, Leeds, LS2 9JT UK

^e Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China; Institute of Zhejiang University-Quzhou, Quzhou 324000, P. R. China;

* E-mail: T.W.Chamberlain@Leeds.ac.uk; Fax: +44 (0)113 432215

Contents

Contents2
1.1 Flow setup
1.2 Gas chromatography analysis5
1.3 TGA profiles of PBSAC-trimesic acid control and trimesic acid7
1.4 PXRD pattern of loose powdered MIL-100(Sc) formed during MIL-100(Sc)@PBSAC synthesis8
1.5 SEM-EDX images of unfunctionalised PBSAC spheres9
1.6 SEM-EDX of MIL-100(Sc)@PBSAC composites10
1.7 Calculation of MIL-100(Sc) stoichiometry and loading onto PBSAC spheres by TGA11
1.7.1 Calculation of MIL-100(Sc) stoichiometry11
1.7.2 Calculation of MIL-100(Sc) loading onto PBSAC spheres12
1.8 TGA derivative weight loss plot14
1.9 Volume size distribution of PBSAC spheres15
2.0 Calculation of reaction metrics16
2.1 Characterisation of MIL-100(Sc)@PBSAC after 26 hours on stream
2.1.1 Atomic absorption spectroscopy (AAS)18
2.1.2 Scanning electron microscopy-energy dispersive X-ray analysis (SEM-EDX)

1.1 Flow setup

Figure SI 1: Flow setup used in this work.

Figure SI 2: a) Packed-bed reactor used in this work with adapters connected. b) Packed-bed reactor used in this work without adapters connected. c) Top-view of packed-bed reactor used in this work.

1.2 Gas chromatography analysis

Tahlo	1.60	method	ucod	for	off_ling	ovnoriment	analycic
rubie	1. GC	methou	useu	jui	0jj-iiiie	experiment	unuiysis

Column	DB-624 (Length: 30 m, Diameter: 0.25 m, Film Thickness: 1.40 µm)
Injection Volume	1 μL
Inlet Temperature	250 °C
Detector Temperature	300 °C
Split Ratio	25:1
Detection	FID

Table 2: Temperature program used for off-line GC chromatography.

Oven	Rate (°C/min)	Value (°C)	Hold Time (mins)	Run Time (mins)
Initial		40	1	1
Ramp 1	25	180	1	7.6
Ramp 2	2.5	190	1	12.6
Ramp 3	20	200	0	13.1

Figure SI 3: Example of typical GC chromatogram obtained in this work, the figure above was obtained after five hours.

Figure SI 4: Calibration curve of (±)-citronellal and response factor (slope).

Figure SI 5: Calibration curve of Isopulegol and response factor (slope).

Figure SI 6: TGA profile of PBSAC-trimesic acid control sample. There is a small weight loss beginning at approximately 300 °C corresponding to the thermal decomposition of adsorbed trimesic acid.

Figure SI 7: TGA profile of trimesic acid. Thermal decomposition begins to occur at approximately 300 °C.

1.4 PXRD pattern of loose powdered MIL-100(Sc) formed during MIL-100(Sc)@PBSAC synthesis

Figure SI 8: PXRD pattern of loose powdered MIL-100(Sc) (green) that was formed in the reaction vessel during MIL-100(Sc)@PBSAC synthesis compared with the simulated pattern of MIL-100(Sc). The data was acquired on a D2 Phaser (Bruker).

1.5 SEM-EDX images of unfunctionalised PBSAC spheres

Figure SI 9: SEM images of a PBSAC bead showing; a) the whole bead and (b-d) a crack located on surface of a PBSAC bead (all images, detector: ETD, mode: SE).

Figure SI 10: Left: Region of PBSAC sphere where EDX spectra was obtained. Right: Resultant EDX spectra, unfunctionalised PBSAC spheres contain carbon, oxygen and small amounts of sulphur (which may be attributed to the presence of residues from the initial polymer bead synthesis).

1.6 SEM-EDX of MIL-100(Sc)@PBSAC composites

Figure SI 11: Left: SEM image of a MIL-100(Sc)@PBSAC sphere with the region where EDX spectra was obtained highlighted. Right: Resultant EDX spectra.

1.7 Calculation of MIL-100(Sc) stoichiometry and loading onto PBSAC spheres by TGA

Figure SI 12: a) TGA profiles of PBSAC spheres (yellow), MIL-100(Sc)@PBSAC (green) and MIL-100(Sc) (blue). b) TGA profile of PBSAC spheres showing the dry mass (\approx 515 °C) and residual mass following frameowrk decomposition at \approx 740 °C. c) TGA profile of MIL-100(Sc)@PBSAC showing the dry mass (\approx 380 °C) and residual mass following frameowrk decomposition at \approx 700 °C. d) TGA profile of MIL-100(Sc) showing the dry mass (\approx 380 °C) and residual mass following frameowrk decomposition at \approx 700 °C. d) TGA profile of MIL-100(Sc) showing the dry mass (\approx 380 °C) and residual mass following frameowrk decomposition at \approx 700 °C.

1.7.1 Calculation of MIL-100(Sc) stoichiometry

In the TGA profile of powdered, reflux prepared MIL-100(Sc) (Figure 8 c), the residual mass (e.g. following framework decomposition at 700 °C) corresponds to Sc_2O_3 and thus allows for determination of the stoichiometry of this framework. By mass, scandium oxide (Sc_2O_3) is 65.2 % scandium, thus of the 3.61 mg residual mass in an experiment involving 10.17 mg MIL-100(Sc), 2.35 mg was scandium (Equation 1).

Mass of scandium in MIL – 100 (Sc)
$$(mg) = \frac{3.61 mg}{100} \times 65.2 = 2.35 mg$$
 (Equation 1)

The residual mass as a percentage of the 'dry' mass (i.e. the mass following solvent removal but before structure thermal decomposition, e.g. at \approx 380 °C in the TGA profile of MIL-100(Sc), Figure 8 c) was calculated according to equation 2.

 $Residual mass (\%) = \frac{mass \ present \ following \ material \ decomposition \ (mg)}{'Dry'mass \ (mg)} \times 100$

(Equation 2)

For an experiment involving 10.17 mg MIL-100(Sc), with a 'dry' mass of 8.65 mg (at 380 °C) (Figure 8 c), the residual mass of MIL-100(Sc) was 3.61 mg and so the amount of scandium present was 2.35 mg. Thus, the powdered MIL-100(Sc) was 27.2 % scandium by weight (Equation 3).

Residual mass of powdered MIL –
$$100(Sc)(\%) = \frac{2.35 mg}{8.65 mg} = 27.2\%$$
 (Equation 3)

The literature reported formula of MIL-100(Sc) is $[Sc_3O(BTC)_2X]$ (where X = singly charged anion required to balance charge, assumed to be hydroxide (OH⁻)) which has a scandium weight percentage of 23.2% w/w, below the calculated value of 27.2% w/w for powdered MIL-100(Sc) in this work. Due to this difference in value, a new stoichiometry of MIL-100(Sc) was calculated, ensuring a neutral framework by balancing the charge with the relevant number of hydroxide (OH⁻) ions. A formula of $[Sc_3O(BTC)_{1.45}(OH)_{2.65}]$ was calculated and thus was also used for the determination of MIL-100(Sc) loading onto PBSAC spheres.

Table 3: Previously reported formula of MIL-100(Sc) and stoichiometry that was calculated in this work.

Formula	Scandium % w/w	
$[Sc_3O(BTC)_2(OH)]$ (reported formula)	23.2	
[Sc ₃ O(BTC) _{1.45} (OH) _{2.65}]	27.2	

1.7.2 Calculation of MIL-100(Sc) loading onto PBSAC spheres

For MIL-100(Sc)@PBSAC composites (Figure 8 c) and PBSAC spheres (Figure 8 b), an average residual mass of 4.05 ± 0.80 % and 1.37 ± 0.40 % and was determined respectively (calculated using Equation 2). The residual mass of PBSAC was subtracted from the residual mass of MIL-100(Sc)@PBSAC composites which gave the amount of Sc₂O₃ present in MIL-100(Sc)@PBSAC composite samples following framework decomposition. This value was then used to calculate the loading of scandium on PBSAC spheres (Equation 4).

100

Sc loading $(\% w/w) = \frac{\text{Resid. mass MIL} - 100(Sc)@PBSAC(\%) - \text{Resid. mass PBSAC(\%)}}{(\% w/w)} \times 65.2$

(Equation 4)

Sc loading
$$(\% w/w) = \frac{4.05 (\%) - 1.37(\%)}{100} \times 65.2 = 1.75\% w/w \pm 0.52\% w/w$$
 (Equation 5)

The MIL-100(Sc) loading was calculated assuming that the framework had the stoichiometry $[Sc_3O(BTC)_{1.45}(OH)_{2.65}]$ (as determined in section 1.7.1) with a 27.2 % w/w scandium loading. The loading of MIL-100(Sc) onto PBSAC spheres was calculated to be 6.42% w/w ± 1.93%.

$$MIL - 100(Sc) \ loading\left(\%\frac{w}{w}\right) = \frac{1.75}{\left(\frac{27.2}{100}\right)} = 6.42 \ \% \ w/w \ \pm 1.93\% \ w/w$$

(Equation 6)

Figure SI 13: TGA derivative weight loss plot for PBSAC, MIL-100(Sc)@PBSAC and MIL-100(Sc). Material decomposition begins at a similar temperature (≈380 °C).

1.9 Volume size distribution of PBSAC spheres

Figure SI 14: Volume distribution of PBSAC spheres obtained from Mastersizer 3000 laser diffraction analysis.

2.0 Calculation of reaction metrics

 $Convrerison (\%) = \frac{[(\pm) - Citronellal]_0 (M) - [(\pm) - Citronellal]_t (M)}{[(\pm) - Citronellal]_0 (M)} \times 100$ $[(\pm) - Citronellal]_0 = (\pm) - Citronellal concentration at start of reaction$

 $[(\pm) - Citronellal]_t = (\pm) - Citronellal concentration at a given time t$

$$Yield (\%) = \frac{\left[(\pm) - Isopulegols\right]_t (M)}{\left[(\pm) - Citronellal\right]_0 (M)} \times 100$$

 $\left[(\pm) - Isopulegols\right]_t = (\pm) - Isopulegols$ concentration at a given time t

 $[(\pm) - Citronellal]_0 = (\pm) - Citronellal concentration at start of reaction$

$$Selectivity to isopulegols (\%) = \frac{[(\pm) - Isopulegols]_t (M)}{[(\pm) - Citronellal]_0 (M) - [(\pm) - Citronellal]_t (M)} \times 100$$
$$[(\pm) - Isopulegols]_t = (\pm) - Isopulegols concentration at a given time t$$
$$[(\pm) - Citronellal]_0 = (\pm) - Citronellal concentration at start of reaction$$
$$[(\pm) - Citronellal]_t = (\pm) - Citronellal concentration at given time t$$

Selectivity to isopulegol (%) = $\frac{\left[(\pm) - Isopulegol\right]_{t}}{\left[(\pm) - Isopulegols\right]_{t}} \times 100$

 $[(\pm) - Isopulegol]_t = (\pm) - Isopulegol concentration at a given time t$ $[(\pm) - Isopulegols]_t = (\pm) - Isopulegols concentration at a given time t$

 $Turnover number (TON) = \frac{moles \ of \ (\pm) - Isopulegols \ produced \ after \ x \ time}{moles \ of \ scandium \ used \ for \ reaction}$

 $Turnover \ Frequency \ (TOF) \ (hr^{-1}) = \frac{TON}{time \ (hr)}$

 $Productivity (g hr^{-1}) = \frac{mass of (\pm) - Isopule gols produced after 1 hour (g)}{time (hr)}$

 $Activity \left(mmol \ g_{cat}^{-1}hr^{-1}\right) = \frac{Average \ amount \ of \ (\pm) - citronellal \ converted \ (mmol)}{hour - on - stream \ (hr) \times gram \ of \ catalyst \ (g_{cat})}$

2.1 Characterisation of MIL-100(Sc)@PBSAC after 26 hours on stream

2.1.1 Atomic absorption spectroscopy (AAS)

Table 4: Atomic absorption spectroscopy (AAS) data of fresh and used (26 hours time-on-stream) catalyst. A average 10.6 % loss of scandium was measured to have leached over the course of the reaction.

Scandium loading – fresh	Scandium loading – Used catalyst samples (26	% loss of scandium over
catalyst sample (% w/w)	hours time-on-stream) (% w/w)	course of reaction
1.68 ± 0.02	1.50 ± 0.03	7.5 – 13.6

2.1.2 Scanning electron microscopy-energy dispersive X-ray analysis (SEM-EDX)

Figure SI 15: SEM images of MIL-100(Sc)@PBSAC after 26 hours on stream (a-c: detector: ETD, mode: SE; d: detector CBS, mode: all). The surface of the particle appears unchanged to MIL-100(Sc)@PBSAC spheres that have not been used for a reaction.

Figure SI 16: Left: SEM image of MIL-100(Sc)@PBSAC after 26 hours on stream. The labelled box in the images highlight where EDX spectra was obtained. Right: The resultant EDX spectra of the region stated. Zirconium is considered an impurity.