## **Supporting Information**

Hollow N-doped carbon nano-mushroom encapsulated hybrid Ni<sub>3</sub>S<sub>2</sub>/Fe<sub>5</sub>Ni<sub>4</sub>S<sub>8</sub> particle anchored to the inner wall of porous wood carbon for efficient oxygen evolution electrocatalysis

Ying Wang,<sup>1†</sup> Yuntang, Zhuang,<sup>1†</sup> Yaru Hu,<sup>1</sup> Fangong Kong,<sup>1</sup> Guihua Yang,<sup>1</sup> Orlando J. Rojas,<sup>2</sup> Ming He<sup>1,\*</sup>

<sup>1</sup>State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong Province, 250353, P. R. China <sup>2</sup>Bioproducts Institute, Department of Chemical & Biological Engineering, Department of Chemistry and Department of Wood Science, 2360 East Mall, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada

\*Corresponding author: heming8916@qlu.edu.cn (M. He)

<sup>†</sup>These authors contributed equally to this work.



**Figure S1.** The digital photo of (a) natural balsa wood, (b) impregnated wood, and (c) NiFeS14@NCNM/CW.



**Figure S2.** SEM images on the (a, b) cross-section and (c, d) tangential-section view for balsa wood, respectively.



Figure S3. FTIR spectra of natural wood and Ni<sup>2+</sup>/Fe<sup>3+</sup>/thiourea-sorbed wood, respectively.



**Figure S4.** SEM images of the (a-c) NiFe/CW, (e-g) NiFeS8@NCNM/CW, and (i-k) NiFeS14@NCNM/CW. The columnar plots show the diameter distribution of the nanoparticles for (d) NiFe/CW, and nano-mushrooms for (h) NiFeS8@NCNM/CW and (l) NiFeS14@NCNM/CW.



Ni Ka1

Fe Ka1

**Figure S5.** (a) Representative SEM image, (b) the corresponding EDX spectrum, and (c-f) element mapping of NiFe/CW.



**Figure S6.** (a) Representative SEM image, (b-f) element mapping, and (g) the corresponding EDX spectrum of NiFeS8@NCNM/CW.



**Figure S7.** (a) Representative SEM image, (b) the corresponding EDX spectrum, and (c-h) element mapping of NiFeS14@NCNM/CW.



**Figure S8.** (a, b) TEM, (c) HAADF-STEM images, and (d) EDX spectra corresponding to different points of NiFeS14@NCNM/CW.



Figure S9. XRD patterns of the (a) NiFe/CW and (b)NiFeS8@NCNM/CW.



Figure S10. Nitrogen adsorption-desorption isotherms of (a) NiFeS8@NCNM/CW, (b) NiFe/CW, and (c) CW.



Figure S11. (a) Full XPS spectrum and (b) C 1s high-resolution spectrum of NiFeS14@NCNM/CW.



**Figure S12.** Static-water-droplet contact angles for (a) NiFeS14@NCNM/CW and (b) CW.



**Figure S13.** The whole activation CV curves of NiFeS14@NCNM/CW with the scan rate of 50 mV s<sup>-1</sup>.



Figure S14. The original and the as-fitted Nyquist plots of different catalysts.



**Figure S15.** (a) The capacitive currents at 1.02 V vs. RHE as a function of scan rate for different catalysts. CV profiles of (b) NiFeS14@NCNM/CW, (c) NiFeS8@NCNM/CW, and (d) NiFe/CW with different scan rates of 20, 40, 60, 80, 100 mV s<sup>-1</sup>.



**Figure S16.** OER polarization curves of the (a) NiFeS14@NCNM/CW, (b) NiFeS8@NCNM/CW, and (c) NiFe/CW in 1 M KOH at different temperatures.



**Figure S17.** (a-c) Representative SEM images, (d) the corresponding EDX spectrum, and (e-j) EDX mapping of NiFeS14@NCNM/CW after durability test.



**Figure S18.** (a) Full XPS spectrum, (b) N 1s, and (b) C 1s high-resolution XPS spectra of NiFeS14@NCNM/CW after the OER durability test.

|                                        | Carbon             |                                                                | Tafel                   |                                    | D.C          |  |
|----------------------------------------|--------------------|----------------------------------------------------------------|-------------------------|------------------------------------|--------------|--|
| Catalyst                               | source             | $\eta_{10}$ (mV)                                               | (mV dec <sup>-1</sup> ) | Stability(1-t)                     | Kets.        |  |
| NiFeS14@NCNM/CW                        | balsa wood         | 147@10<br>mA cm <sup>-2</sup><br>250@50<br>mA cm <sup>-2</sup> | 56.3                    | retain 93% after 24 h              | This<br>work |  |
| Co/Ni-CW                               | basswood           | 330                                                            | 68                      | retain 92% after 10 h              | 1            |  |
| Co@N-HPMC                              | basswood           | 297                                                            | 115.7                   | retain 64% after 3 h               | 2            |  |
| Ni-W-B/wood                            | fir wood           | 360@50                                                         | 86.3                    | retain 90.4% after 50 h            | 3            |  |
| Co@NCW                                 | paulownia<br>wood  | 350                                                            | 92                      | stable after 10 h                  | 4            |  |
| CoFe@NC/WC                             | spruce wood        | 315                                                            | 57.6                    | stable after 24 h                  | 5            |  |
| NiFe/DWC                               | poplar wood        | 260@100                                                        | 98                      | potential retain 97%<br>after 60 h | 6            |  |
| Co@NCW                                 | basswood           | 410                                                            | -                       | -                                  | 7            |  |
| Ni <sub>3</sub> Fe-CW                  | basswood           | 237                                                            | 138                     | retain 94.6% after 50 h            | 8            |  |
| FeNiP@NCNT/CW                          | balsa wood         | 180@50                                                         | 60.9                    | retain 96% after 200 h             | 9            |  |
| N/E-HPC-900                            | eucalyptus<br>wood | 440                                                            | -                       | retain 90% after 5.6 h             | 10           |  |
| FeNi <sub>3</sub> @NC                  | chitosan           | 277                                                            | 77                      | retain ~90% after 10 h             | 11           |  |
| CCC-PAN                                | cotton cloth       | 351                                                            | 135                     | retain 85% after 15 h              | 12           |  |
| NPCNS                                  | leaves             | 340@5                                                          | 191                     | retain 83.6% after 20 h            | 13           |  |
| Co <sub>9</sub> S <sub>8</sub> @Co-N/C | tissue paper       | 373                                                            | 78.4                    | -                                  | 14           |  |
| Fe <sub>3</sub> O <sub>4</sub> /NiS@CC | Cotton cloth       | 310                                                            | 82                      | stable after 26 h                  | 15           |  |

 Table S1. Comparisons of OER activities of NiFeS14@NCNT/CW with those of recently reported biomass-derived carbon-supported electrocatalysts.

| Catalyst             | R <sub>s</sub> | R <sub>ct</sub> | CPE-T    | CPE-P   |
|----------------------|----------------|-----------------|----------|---------|
| NiFeS14@NCNM/CW      | 2.923          | 1.739           | 0.2194   | 0.66882 |
| NiFeS8@NCNM/CW       | 3.031          | 1.856           | 0.21129  | 0.6518  |
| NiFe /CW             | 4.104          | 5.066           | 0.11518  | 0.69006 |
| RuO <sub>2</sub> /CW | 3.994          | 23.17           | 0.024906 | 0.66823 |
| NiS@NCNM/CW          | 4.179          | 37.91           | 0.15231  | 0.68815 |
| S@NCNM/CW            | 4.517          | 505.1           | 0.019479 | 0.65664 |
| CW                   | 4.878          | 671.7           | 0.030537 | 0.69094 |

**Table S2.** Electrochemical impedance parameters obtained simulating the Nyquist

 plots in Figure 5f to the equivalent circuit model.

## References

- W. Gan, L. Wu, Y. Wang, H. Gao, L. Gao, S. Xiao, J. Liu, Y. Xie, T. Li and J. Li, *Adv. Funct. Mater.*, 2021, **31**, 2010951.
- 2. Y. Li, S. Min and F. Wang, *Sustain. Energ. Fuels*, 2019, **3**, 2753-2762.
- L. Chen, J. Zhang, B. Lu, H. Liu, R. Wu and Y. Guo, *Int. J. Hydrogen Energy*, 2022, 47, 35571-35580.
- Y. Wang, K. Sheng, R. Xu, Z. Chen, K. Shi, W. Li and J. Li, *Chem. Eng. Sci.*, 2023, **268**, 118433.
- K. Ao, X. Zhang, R. R. Nazmutdinov, D. Wang, J. Shi, X. Yue, J. Sun, W. Schmickler and W. A. Daoud, *Energy Environ. Mater.*, 2023, 0, e12499.
- Y. Huang, Y. Qing, Y. Chen, Y. Liao, A. Jiang, Y. Li, Y. Wu, C. Tian and N. Yan, ACS Sustainable Chem. Eng., 2022, 10, 15233-15242.
- 7. W. Li, F. Wang, Z. Zhang and S. Min, *Appl. Catal.*, *B*, 2022, **317**, 121758.
- Y. Wang, Y. Shang, Z. Cao, K. Zeng, Y. Xie, J. Li, Y. Yao and W. Gan, *Chem. Eng. J.*, 2022, 439, 135722.
- X. Tao, H. Xu, S. Luo, Y. Wu, C. Tian, X. Lu and Y. Qing, *Appl. Catal.*, *B*, 2020, 279, 119367.
- X. Peng, L. Zhang, Z. Chen, L. Zhong, D. Zhao, X. Chi, X. Zhao, L. Li, X. Lu,
   K. Leng, C. Liu, W. Liu, W. Tang and K. P. Loh, *Adv. Mater.*, 2019, 31, e1900341.
- D. Chen, J. Zhu, X. Mu, R. Cheng, W. Li, S. Liu, Z. Pu, C. Lin and S. Mu, *Appl. Catal.*, *B*, 2020, 268, 118729.
- C. Zhang, S. Bhoyate, M. Hyatt, B. L. Neria, K. Siam, P. K. Kahol, M. Ghimire,
   S. R. Mishra, F. Perez and R. K. Gupta, *Surf. Coat. Technol.*, 2018, 347, 407-413.
- Y. Huang, D. Wu, D. Cao and D. Cheng, *Int. J. Hydrogen Energy*, 2018, 43, 8611-8622.
- I. S. Amiinu, Z. Pu, D. He, H. G. R. Monestel and S. Mu, *Carbon*, 2018, 137, 274-281.
- 15. S. Jiang, H. Shao, G. Cao, H. Li, W. Xu, J. Li, J. Fang and X. Wang, J. Mater.

Sci. Technol., 2020, 59, 92-99.