Electronic Supplementary Information (ESI)

Unraveling the role of substrate materials in governing the carbon/carbide growth of molten carbonate electrolysis of $\mathrm{CO}_{\mathbf{2}}$

Rui Yu, Kaifa Du, ${ }^{*}$ Bowen Deng, Huayi Yin, Dihua Wang*

School of Resource and Environmental Science, Hubei International Scientific and Technological
Cooperation Base of Sustainable Resource and Energy, Wuhan University, Wuhan 430072, China.
*Corresponding author Email address: wangdh@whu.edu.cn (D. Wang); dukf@whu.edu.cn (K. Du)

Fig. S1 (a) XPS spectra of Ti cathode after carbon deposition at $5 \mathrm{~mA} \mathrm{~cm}^{-2}$ for 120 min at $650{ }^{\circ} \mathrm{C}$. (b-c) TEM image of carbon particles obtained on Ti cathode after 120 min electrolysis.

Fig. S2 (a) XRD pattern of Fe substrate after peeling off the powder on the surface after electrolysis at 5 $\mathrm{mA} \mathrm{cm}-2$ for 120 min at $650^{\circ} \mathrm{C}$. (b) XRD pattern of the peeled powder.

Fig. S3 (a) SEM image of carbon products obtained on Ni at $5 \mathrm{~mA} \mathrm{~cm}^{-2}$ for 120 min at $650{ }^{\circ} \mathrm{C}$. Inset: optical image of the Ni cathode after electrolysis. SEM image of the grey area (b) and the black area (c) in the optical image. (d) Raman spectra of the corresponding areas.

Table S1 Gibbs free energies and equilibrium constants of the reactions between metals/carbides and carbon (carbon-binding ability of metals) at different temperatures (thermodynamic data was calculated by HSC Chemistry 6.0)

Reaction	$450{ }^{\circ} \mathrm{C}$		$550{ }^{\circ} \mathrm{C}$		$650{ }^{\circ} \mathrm{C}$		$750{ }^{\circ} \mathrm{C}$		$850{ }^{\circ} \mathrm{C}$	
	$\begin{gathered} \Delta \mathrm{G} \\ \mathrm{~kJ} \mathrm{~mol} \\ \hline 1 \end{gathered}$	K	$\begin{gathered} \Delta \mathrm{G} \\ \mathrm{~kJ} \mathrm{~mol}^{-1} \end{gathered}$	K	$\underset{\substack{\Delta \mathrm{GJ} \mathrm{~mol} \\ \\ \hline 1}}{ }$	K	$\begin{gathered} \Delta \mathrm{G} \\ \mathrm{~kJ} \mathrm{~mol}-1 \end{gathered}$	K	$\begin{gathered} \Delta \mathrm{G} \\ \mathrm{~kJ} \mathrm{~mol}^{-1} \end{gathered}$	K
$\mathrm{Ti}+\mathrm{C}=\mathrm{TiC}$	-176.2	12.7	-175.1	11.1	-174.1	9.85	-173	8.83	-172	8
$2 \mathrm{~V}+\mathrm{C}=\mathrm{V}_{2} \mathrm{C}$	-105.3	7.61	-103.7	6.59	-102.3	5.79	-100.8	5.15	-99.4	4.62
$7 / 3 \mathrm{Cr}+\mathrm{C}=1 / 3 \mathrm{Cr}_{7} \mathrm{C}_{3}$	-59.9	12.9	-61.2	11.6	-62.6	10.6	-64.1	9.82	-65.7	9.16
$3 / 5 \mathrm{Cr}_{7} \mathrm{C}_{3}+\mathrm{C}=7 / 5 \mathrm{Cr}_{3} \mathrm{C}_{2}$	-19.9	2.40	-20.1	2.12	-20.3	1.91	-20.5	1.75	-20.8	1.62
$2 \mathrm{Mo}+\mathrm{C}=\mathrm{Mo}_{2} \mathrm{C}$	-52.6	3.80	-53.4	3.39	-54.2	3.06	-55.1	2.81	-55.9	2.6
$\mathrm{W}+\mathrm{C}=\mathrm{WC}$	-36.6	2.64	-36.3	2.3	-36	2.04	-35.8	1.83	-35.5	1.65
$\mathrm{W}_{2} \mathrm{C}+\mathrm{C}=2 \mathrm{WC}$	-52.7	3.81	-51.5	3.26	-49.9	2.83	-48.2	2.46	-46.3	2.15
$3 \mathrm{Fe}+\mathrm{C}=\mathrm{Fe}_{3} \mathrm{C}$	8.42	-0.608	5.49	-0.349	2.86	-0.162	0.71	-0.036	-0.87	-0.04
$2 \mathrm{Co}+\mathrm{C}=\mathrm{Co}_{2} \mathrm{C}$	24.8	-1.79	30.7	-1.95	37.7	-2.13	45.7	-2.33	54.6	-2.54
$3 \mathrm{Ni}+\mathrm{C}=\mathrm{Ni}_{3} \mathrm{C}$	57.3	-4.14	55.7	-3.53	54.1	-3.06	52.4	-2.67	50.7	-2.36

