WO₃-NPs activated WS₂ layered heterostructures for efficient broadband (254 nm-940 nm) photodetection

Sukhendu Maity, Krishnendu Sarkar, Praveen Kumar*

School of Materials Science, Indian Association for the Cultivation of Science, Kolkata, 700032, India

Contents

Figure S1. (a) XRD measurements for WO ₃ nanoparticle coated thin film, (b) UV-Vis absorption spectra for WS ₂ , WO ₃ and WS ₂ -WO ₃ mixed solution, (c) Photoluminescence spectra WO ₃ nanoparticles; inset shows the colours WO ₃ nanoparticles, (d) valence band spectra recorded for WS ₂ and WO ₃ , (e)-(f) HAADF mapping for WS ₂ and WO ₃ , (g)-(h) EDX data for WS ₂ and WO ₃ respectively.
Figure S2. Schematics of fabricated photodetector along with I-V measurement system under a broad spectral response
Figure S3. Optoelectronic characteristics of fabricated photodetectors (a)-(i) I-V curve of D_1 abd D_2 under various light intensities from 254 nm to 940 nm
Figure S4. (a)-(i) Intensity dependent photoswitching of D ₂ under a fixed bias 2 volt from 254 nm to 940 nm
Figure S5. (a)-(f) Intensity dependent photoswitching of D_1 under a fixed bias 2 volt from 254 nm to 940 nm, (g) Bias dependent photoswitching of D_1 and D_2 under a fixed intensity 289 μ W/cm ² for 254 nm, (h) Bias dependent photoswitching of D_1 and D_2 under a fixed intensity 1058 μ W/cm ² for 365 nm
Figure S6. (a) Intensity dependent photoswitching of D_1 and D_2 under a fixed bias 2 volt under 365 nm with a fixed intensity 47 μ W/cm ² , (b) rise time and fall time of device D_1 and D_2 , (c) multiple photoswitching of device D_2 under a fixed bias 2 volt under 555 nm with a fixed intensity 187 μ W/cm ² , (d) dark current measurements of device D_2 with a time interval of six months, (e) electron localization function for WS ₂ /WO ₃ heterostructures
Table S1. Parameters to calculate the average photoluminescence lifetime of carriers 6
Table S2. Parameters to calculate the average photoluminescence lifetime of carriers
Table S3. The highest recorded responsivity and EQE (%) values for D_1 and D_2 device configuration7
Table S4. Performance comparison of our fabricated device with other reported work8

Figure S1. (a) XRD measurements for WO₃ nanoparticle coated thin film, (b) UV-Vis absorption spectra for WS₂, WO₃ and WS₂-WO₃ mixed solution, (c) Photoluminescence spectra for exfoliated WO₃ nanoparticles (d) valence band spectra recorded for WS₂ and WO₃, (e)-(f) HAADF mapping for WS₂ and WO₃, (g)-(h) EDX data for WS₂ and WO₃ respectively.

Figure S2. Schematics of fabricated photodetector along with I-V measurement system under a broad spectral response.

Figure S3. Optoelectronic characteristics of fabricated photodetectors (a)-(i) I-V curve of $D_1abd D_2$ under various light intensities from 254 nm to 940 nm.

Figure S4. (a)-(i) Intensity dependent photoswitching of D_2 under a fixed bias 2 volt from 254 nm to 940 nm.

Figure S5. (a)-(f) Intensity dependent photoswitching of D_1 under a fixed bias 2 volt from 254 nm to 940 nm, (g) Bias dependent photoswitching of D_1 and D_2 under a fixed intensity 289 μ W/cm² for 254 nm, (h) Bias dependent photoswitching of D_1 and D_2 under a fixed intensity 1058 μ W/cm² for 365 nm.

Figure S6. (a) Intensity dependent photoswitching of D_1 and D_2 under a fixed bias 2 volt under 365 nm with a fixed intensity 47 μ W/cm², (b) rise time and fall time of device D_1 and D_2 , (c) multiple photoswitching of device D_2 under a fixed bias 2 volt under 555 nm with a fixed intensity 187 μ W/cm², (d) dark current measurements of device D_2 with a time interval of six months, (e) electron localization function for WS₂/WO₃ heterostructures.

Table S1. Parameters to calculate the average photoluminescence lifetime of carriers

Excitation Emission Average T_1 T_2 **Device** Configuration B_1 B_2 (nm)(nm)Life time(ns) (ns) (ns) 1.3822 1.03352 4.16676 WO₃ 66.45 33.55 375 430 1.016485 0.907484 4.50884 86.57 13.43 WS₂/WO₃

 $T = A + B_1 * exp(-i/T_1) + B_2 * exp(i/T_2)$

Table S2. Parameters to calculate the average photoluminescence lifetime of carriers

$$T = A + B_1 * \exp(-i/T_1) + B_2 * \exp(-i/T_2) + B_3 * \exp(-i/T_3)$$

Sample	Excitation (nm)	Emission (nm)	Average Life time(ns)	T ₁ (ns)	T ₂ (ns)	T ₃ (ns)	\mathbf{B}_1	B ₂	B ₃
Si/WO ₃	375	430	0.527	1.29646	5.8678	0.22844	30.13	33.13	36.74
Si/WS ₂ /WO ₃			0.298	1.35534	6.23679	0.13845	21.62	35.03	43.35

Figure	Wavelength	gth Intensity R (D ₁)		EQE (D ₁)	R (D ₂)	EQE (D2)	
	(nm)	(µW/cm ²)	in A/W	(%)	in A/W	(%)	
	365	0.43	121.1	41×10^{3}	251.4	85 × 10^3	
5 (a)	850	1.79	2.39	0.34×10^{3}	23.1	3.3 × 10 ³	
	940	1.81	1.8	0.23×10^{3}	25.14	3.3×10^{3}	
	254	0.5	16.3	7.9×10^{3}	47.9	23×10^3	
5 (b)	505	0.58	43.8	10×10^{3}	179.9	43×10^{3}	
	555	2.57	14.07	3.1×10^{3}	39.97	8.9 × 10 ³	
	420	0.42	109.2	32×10^{3}	192.7	56 × 10^3	
5 (c)	635	2.78	10.09	1.9×10^{3}	23.89	4.7 \times 10 ³	
	700	1.26	5.47	0.96×10^{3}	26.57	4.7 \times 10 ³	

Table S3. The highest recorded responsivity and EQE (%) values for D1 and D2 device configuration.

Device configuration	Process	Wavelength nm	Bias (volt)	Responsivity (A/W)	Detectivity (Jones)	EQE	Ref
Si/WO ₃ /Graphene	radio- frequency (RF) magnetron sputtering	UV	3	0.253	5.7136 × 10		1
Si/WS ₂ /Graphene	chemical vapor deposition (CVD)	550	Vg= 0 Vds= 5	8.05	2.8 × 10 ¹⁰		2
WS ₂ /Graphene	Electrophore sis	670	10	0.439	1.41 × 10 ¹⁰	81.39	3
Si/WO _{3-X}	Atomic layer deposition	405	-5	72.8	3.96 × 1011		4
WS ₂ /Graphene	chemical vapor deposition (CVD)	480	3	1.15	2.06 × 10 ⁹		5
Cr: Au /WS ₂ /Cr: Au	CVD	240	10	0.261	7.72 × 10 ¹¹	1.24	6
Si/WO ₃	Glancing Angle Deposition	360	3	9.66	5.94 × 10 ¹²	3330	7
Ti: Au /WO ₃ / Ti: Au	Vapor cooling condensation	350	-5	0.0207	1.34 × 10 ⁹		8
ZnO- WS2/Si	Liquid phase exfoliation and microwave assisted	670	-2	9.48	6.39 × 10 ¹¹	1758	9
WS ₂ /Graphene/n- Si	Thermal evaporation	800	-0.3	54.5	5.77 × 10 ¹³		10
WS ₂ /Si	magnetron sputtering and post chalcogenatio n	514	-3	4.3	4.0 × 10 ¹²	1100	11
Ti /WO ₃ / Ti	magnetron sputtering	382	3	0.94	1.97 × 10 ¹²	304.2	12
p-Si/WS ₂ /WO ₃	Solvothermal & spray coating	365 (254-940)	2	251.4	1.892×10^{1}	$85 \times 1 \\ 0^3$	This work

 Table S4. Performance comparison of our fabricated device with other reported work.

References:

- 1 P. V. K. Yadav, B. Ajitha, Y. A. Kumar Reddy and V. R. Minnam Reddy, *ACS Appl. Electron. Mater.*, 2021, **3**, 2056–2066.
- 2 M. Alamri, M. Gong, B. Cook, R. Goul and J. Z. Wu, *ACS Appl. Mater. Interfaces*, 2019, **11**, 33390–33398.
- 3 P. M. Pataniya and C. K. Sumesh, ACS Appl. Nano Mater., 2020, **3**, 6935–6944.
- 4 X. Zhang, Y. Su, Z. Tang, D. Hu, Z. Wang, Y. Hou and X. Wang, *Scr. Mater.*, 2020, **189**, 89–94.
- 5 F. I. Alzakia, B. Tang, S. J. Pennycook and S. C. Tan, *Mater. Horizons*, 2020, 7, 3325–3338.
- 6 P. Aggarwal, S. Kaushik, P. Bisht, M. Sharma, A. Singh, B. R. Mehta and R. Singh, *Cryst. Growth Des.*, 2022, **22**, 3206–3217.
- 7 R. Rajkumari and N. K. Singh, *IEEE Trans. Nanotechnol.*, 2019, 18, 676–683.
- 8 H.-Y. Lee, T.-S. Lin and C.-T. Lee, ECS J. Solid State Sci. Technol., 2018, 7, Q85–Q87.
- 9 M. Patel, P. M. Pataniya, V. Patel, C. K. Sumesh and D. J. Late, *Sol. Energy*, 2020, **206**, 974–982.
- 10 R. Xiao, C. Lan, Y. Li, C. Zeng, T. He, S. Wang, C. Li, Y. Yin and Y. Liu, *Adv. Mater. Interfaces*, 2019, **6**, 19011304–1901310.
- 11 S. Pal, S. Mukherjee, R. Jangir, M. Nand, D. Jana, S. K. Mandal, S. Bhunia, C. Mukherjee, S. N. Jha and S. K. Ray, *ACS Appl. Nano Mater.*, 2021, **4**, 3241–3251.
- 12 P. V. Karthik Yadav, B. Ajitha, Y. A. K. Reddy, V. R. Minnam Reddy, M. Reddeppa and M. D. Kim, *Appl. Surf. Sci.*, 2021, **536**, 147947.