
S1

Supporting Information
Deciphering DNA Nucleotide Sequence and their Rotation Dynamics with 

Interpretable Machine Learning Integrated C3N Nanopore
Milan Kumar Jena,† Sneha Mittal,† Surya Sekhar Manna,† Biswarup Pathak†,*

†Department of Chemistry, Indian Institute of Technology (IIT) Indore, Indore, Madhya Pradesh, 
453552, India

*E-mail: biswarup@iiti.ac.in

Contents                                                                                                       Page No.

1. Computational details………………………………………………………………………..S2

2. Relative energy table………………………………………………………………………...S8

3. Effect of rotation on transmission function………………………………………………….S9

4. Effect of longitudinal translation on transmission function.…………………………..…….S10

5. Effect of lateral translation on transmission function ………………………………………S11

6. Feature engineering………………...………………………………………………………..S12

7. Pearson’s feature correlation matrix plots………………………….………………………..S13

8. Spearman’s feature correlation matrix plots.…………….…………………………………..S17

9. Optimized hyperparameters of ML  models………..…………………………..….………...S21

10. K-Fold Cross-validation………..…...…..……….…………………………………….…...S23

11. Global ML interpretability into transmission function prediction………………………….S24

12. Local ML interpretability into transmission function prediction…………………………..S25

13. Rotation dynamics prediction of nucleotides ……………………………………...………S26

14. Eigenchannel wavefunction analysis…………………………………...…………………..S42

15. ML sensitivity of nucleotides…………………………………………………………...….S43

16. Ternary classification report………….…………………………………………………….S44

17. Binary classification report…………………………………………………………………S45

1. Computational Details

Electronic Supplementary Material (ESI) for Nanoscale.
This journal is © The Royal Society of Chemistry 2023

mailto:biswarup@iiti.ac.in


S2

Text S1: (Machine Learning Details)

Linear Regression (LR): Linear regression is used to find the best line of fit, which describes 

the linear relation between input (x) and target output (y).

𝑦 = 𝑤𝑥 + 𝑏

Where y is the target output, w is the slope of the line, and b is the intercept of the line. 

Kernel Ridge Regression (KRR): Kernel ridge regression is a ridge regression (linear least 

squares with l2-norm regularization) with the kernel trick. It helps in exploring the nonlinear 

relations of a regression problem. It has four common kernels: linear, polynomial, RBF, and 

laplacian.1

Gaussian Process Regression (GPR): Gaussian process regression combines the concepts of 

marginalization and the Bayesian approach to regression. In the normal regression model, y=f(x) 

is evaluated. In GPR, the Gaussian process is placed over the f(x). For this, the prior GP needs to 

be specified.

eXtreme Gradient Boosting Regression (XGBR): XGBR was initially developed and 

described by Chen et al. in their 2016 paper titled “XGBoost: A Scalable Tree Boosting 

System”.2 XGBR is one of the ensemble learning algorithms that aggregate multiple tree learners 

to achieve better prediction results. Here, the term “gradient boosting” originates from the idea of 

“boosting” or improving a single weak model by combining it with several other weak models 

(decision trees) to generate a collectively strong model.3

Random Forest Regression (RFR): In 2001, Breiman et al.4 introduced the random forest 

machine learning algorithm. This is an ensemble technique that uses multiple decision trees and 

a technique called Bootstrap and Aggregation, commonly known as bagging. The target output 
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of the ensemble is calculated as the average of the predictions of each tree rather than relying on 

a single decision tree. The hyperparameters of Random Forest Regression include the number of 

decision trees in the forest, the maximum depth of each decision tree, and the number of features 

to consider for each split. Random Forest Regression can handle both categorical and numerical 

data and is less prone to overfitting than other decision tree-based algorithms due to the 

randomization of feature subsets and split points. However, it may suffer from high bias due to 

the randomization process, leading to suboptimal performance in some cases.

Adaptive Boosting Regression (AdaBoost): AdaBoost Regression involves iteratively training 

a series of decision trees, where each decision tree is trained on a modified version of the training 

data. The modification involves assigning higher weights to the data points that were not well-

predicted by the previous decision tree. The algorithm assigns weight to each data point, which 

represents its importance in the model. The weights are updated after each iteration based on the 

performance of the previous decision tree. During prediction, the algorithm passes the input data 

through each decision tree in the series and obtains the output of each tree. The output of each 

decision tree is then combined using a weighted sum to obtain the final prediction. The 

hyperparameters of AdaBoost Regression include the number of decision trees in the series, the 

learning rate, which controls the contribution of each decision tree, and the maximum depth of 

each decision tree. AdaBoost Regression can handle both categorical and numerical data and is 

less prone to overfitting than other decision tree-based algorithms. However, it may be sensitive 

to noisy data and outliers, which can negatively affect the performance of the model.5

Extra Tree Regression (ETR): Extra Trees Regression involves randomly selecting a subset of 

features from the dataset and choosing random split points for each subset. This process is 

repeated for a large number of decision trees to create a forest of decision trees. During 



S4

prediction, the algorithm passes the input data through each decision tree in the forest and 

obtains the output of each tree. The output of all decision trees is then combined to obtain the 

final prediction. The algorithm can handle both categorical and numerical data and is less prone 

to overfitting than other decision tree-based algorithms due to the randomization of feature 

subsets and split points.

Statistical Evaluation Metrics

Coefficient of Determination (R2):  

It measures how well the regression model predicts the output and its value range between 0 and 
1.

R2 =    where    = 

𝑛

∑
𝑖 = 1

(𝑀𝑖 ‒ �̅�)2

𝑛

∑
𝑖 = 1

(𝑚𝑖 ‒ �̅�)2

�̅� 

𝑛

∑
𝑖 = 1

𝑚𝑖

𝑛

Root Mean Square Error (RMSE): 

It determines the standard deviation of the predicted output value from the actual value.

RMSE = 

1
𝑛

𝑛

∑
𝑖 = 1

(𝑀𝑖 ‒ 𝑚𝑖)2

Where  represents the predicted output value,  represents the actual DFT calculated value, 𝑀𝑖 𝑚𝑖

 is the mean of the DFT calculated values, and n is the total data points in the data set.�̅�

In ML classification, the confusion matrix is considered to be the best evaluation matrix and 

basic of all other matrices. It is a table with combinations of predicted and actual values.
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True positive (TP) = The number of correct positive predictions made by a model.

True negative (TN) = The number of correct negative predictions made by a model.

False positive (FP) = The number of incorrect positive predictions made by a model.

False negative (FN) = The number of incorrect negative predictions made by a model.

Accuracy = Accuracy measures the number of correct predictions done by the model among the 

total number of predictions. 

Accuracy = 

𝑇𝑃 +  𝑇𝑁
𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁

Precision  = Precision explains how many of the correctly predicted instances actually turned out 

to be positive. Precision is helpful in cases where False Positive is a greater concern than False 

Negatives. It is also known as the true positive rate.

Precision = 

𝑇𝑃
𝑇𝑃 +  𝐹𝑃

Recall =  Recall explains how many of the actual positive instances we were able to predict 

correctly with our model. It is a useful metric in cases where a False Negative is of greater 

concern than a False Positive. It is also known as the sensitivity of the model.
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Recall = 

𝑇𝑃
𝑇𝑃 +  𝐹𝑁

F1 Score  =  It is the harmonic mean of Precision and Recall metrics. 

F1 Score = 2 x  

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑅𝑒𝑐𝑎𝑙𝑙

Figure S1. Optimized atomic structures of the four nucleotides (dAMP, dTMP, dGMP, and 
dCMP), and (b) schematic illustration of C3N nanopore device considered for quantum transport 
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studies; showing left (L), right (R) electrode/lead and central scattering region. The quantum 
transport calculation is performed along the z-direction.

Text S2: (DFT-NEGF Method Details)

In this study, four naturally available DNA nucleotides, deoxyadenosine monophosphate 

(dAMP), deoxythymidine monophosphate (dTMP), deoxyguanosine monophosphate (dGMP), 

and deoxycytidine monophosphate (dCMP) have been selected and relaxed using the B3LYP 

functional and 6-311++G** basis sets with the Gaussian 09 package.6,7 The bare C3N nanopore 

structure optimization is performed separately using the SIESTA (Spanish initiative for 

electronic simulations with thousands atoms) code.8,9 After that, the C3N nanopore+nucleotide 

setups  are fully optimized. All the structural and electronic properties calculation optimizations 

are performed by using the first-principles-based DFT method, as included in the SIESTA. The 

modeled nanopore consists of an atomically thick and nanoscale sized C3N sheet. The vdW-DF-

cx functional, norm-conserved Troullier–Martins pseudopotentials, double-zeta polarized (DZP) 

basis sets, and conjugate gradient (CG) algorithm are employed for all the calculations.10–12 The 

quantum transport calculations are done with the non-equilibrium Green’s function (NEGF) 

method with DFT by employing the TranSIESTA code.13,14 The zero-bias transmission function 

 is the probability of transport of electron from the left (source) to the right (drain) electrode 𝑇(𝐸)

(sum of all the possible transmission channels) in the z-direction is calculated by the following 

equation.

𝑇(𝐸) = 𝑇𝑟[Γ𝐿(𝐸)𝐺𝐶(𝐸)Γ𝑅(𝐸)𝐺 †
𝐶 (𝐸)]
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where  symbolizes the left (L) and right (R) lead coupling matrix, and /  are Γ𝐿/𝑅(𝐸) 𝐺𝐶(𝐸) 𝐺 †
𝐶 (𝐸)

the retarded/advanced Green’s functions. According to Landauer’s model,15,16 the molecular 

conductance, in the limit of zero temperature and zero bias voltage, is expressed as

    
𝐺 = (2𝑒2

ℎ )𝑇(𝐸𝐹)

Where   represents the quantum conductance,  is the transmission function at the Fermi 

2𝑒2

ℎ 𝑇(𝐸𝐹)

level .16,17(𝐸𝐹)

2. Relative Energy Table

Table S1. The calculated relative energies (in eV) of the in-plane rotated configuration of all the 
four nucleotides with respect to the energetically most stable geometry.
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3. Effect of Rotation on Transmission Function
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Figure S2. (a) Schematic illustration of rotational fluctuation of nucleotides while translocating 
through the C3N nanopore. The change in nucleotide position affects the transmission function 
due to the change in the coupling strength between the nucleotide and nanopore and (b) changes 
in transmission spectra due to in-plane rotation (from 0° to 180° in steps of 30° along the x-axis 
in the yz plane) are shown for all four nucleotides.

4. Effect of Longitudinal Translation on Transmission Function
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Figure S3. (a) Scheme of out-of-plane longitudinal translations in positive and negative 
directions by ± 1.0 Å for C3N nanopore along the x-axis in the yz-plane and (b) the change in the 
transmission function for each targeted nucleotide due to out-of-plane translation.

5. Effect of Lateral Translation on Transmission Function 
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Figure S4. (a) Scheme of in-plane lateral translations in positive and negative directions by ± 0.5 
Å for C3N nanopore along the z-axis in the yz-plane and (b) the change in the transmission 
function for each targeted nucleotide due to in-plane translations.

6. Features Engineering

Table S2. The detailed description of the features along with their name.
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Feature Name Description Symbol
F1 Mean valence electrons �̅�𝑣
F2 Mean molecular weight �̅�𝑤
F3 Mean electronegativity �̅�
F4 Minimum distance between nucleotide H-atom and pore edge H-

atom
𝑑𝐻 ‒ 𝐻

F5 Minimum distance between nucleotide H-atom and pore edge C-
atom

𝑑𝐻 ‒ 𝐶

F6 Minimum distance between nucleotide H-atom and pore edge N-
atom

𝑑𝐻 ‒ 𝑁

F7 Minimum distance between nucleotide H-atom and pore edge O-
atom

𝑑𝐻 ‒ 𝑂

F8 Mean electron affinity �̅�𝐴
F9 Mean van der Waals radii �̅�𝑣𝑑𝑤
F10 Mean dipole polarizability �̅�𝑒
F11 Mean ionic radii �̅�𝑖𝑜𝑛𝑖𝑐
F12 Mean covalent radii �̅�𝑐𝑜𝑣
F13 Mean ionization energy ̅𝐼𝐸
F14 Mean effective nuclear charge ̅𝑍𝑒𝑓𝑓
F15 Energy range of transmission 𝐸

7. Pearson’s Feature Correlation Matrix Plots
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Figure S5. Feature-feature correlation matrix of Pearson’s correlation coefficients (PCCs) for 
dAMP data set. The +1, -1, and 0 on the scale indicate the maximum positive, maximum 
negative, and no correlation, respectively.
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Figure S6. Feature-feature correlation matrix of Pearson’s correlation coefficients (PCCs) for 
dTMP data set. The +1, -1, and 0 on the scale indicate the maximum positive, maximum 
negative, and no correlation, respectively.
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Figure S7. Feature-feature correlation matrix of Pearson’s correlation coefficients (PCCs) for 
dGMP data set. The +1, -1, and 0 on the scale indicate the maximum positive, maximum 
negative, and no correlation, respectively.
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Figure S8. Feature-feature correlation matrix of Pearson’s correlation coefficients (PCCs) for 
dCMP data set. The +1, -1, and 0 on the scale indicate the maximum positive, maximum 
negative, and no correlation, respectively.
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8. Spearman’s Rank Correlation Matrix Plots

Figure S9. Spearman’s rank correlation coefficients (ρ) for the dAMP data set. The +1, -1, and 0 
on the scale indicate the maximum positive, maximum negative, and no correlation, respectively.
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Figure S10. Spearman’s rank correlation coefficients (ρ) for the dTMP data set. The +1, -1, and 
0 on the scale indicate the maximum positive, maximum negative, and no correlation, 
respectively.
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Figure S11. Spearman’s rank correlation coefficients (ρ) for the dGMP data set. The +1, -1, and 
0 on the scale indicate the maximum positive, maximum negative, and no correlation, 
respectively.
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Figure S12. Spearman’s rank correlation coefficients (ρ) for the dCMP data set. The +1, -1, and 
0 on the scale indicate the maximum positive, maximum negative, and no correlation, 
respectively.
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9. Optimized Hyperparameters of the ML Models

Table S3. Optimized Hyperparameters Values with their Corresponding RMSEs for the Seven 
Considered Regression Models with the dAMP Data Set.

Table S4. Optimized Hyperparameters Values with their Corresponding RMSEs for the Seven 
Considered Regression Models with the dTMP Data Set.
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Table S5. Optimized Hyperparameters Values with their Corresponding RMSEs for the Seven 
Considered Regression Models with the dGMP Data Set.

Table S6. Optimized Hyperparameters Values with their Corresponding RMSEs for the Seven 
Considered Regression Models with the dCMP Data Set.
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10. K-fold Cross-Validation

Text S3:

Cross-validation is a common technique used in machine learning to assess the performance of a 

model. It involves splitting the data into multiple sets, with some being used for training the 

model and others for evaluating it. The idea is to simulate the model's performance on new, 

unseen data by using only a subset of the available data to train the model. This is done to avoid 

overfitting, where a model performs well on the training data but poorly on new data. Nine-fold 

cross-validation is a specific type of cross-validation that involves dividing the data into nine 

equal parts or folds. The model is trained on eight folds, and the remaining fold is used as a 

validation set to test the model's performance. This process is repeated nine times, with each fold 

used as the validation set once. The performance metrics are then averaged across all nine folds 

to obtain a final estimate of the model's performance.
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11. Global Interpretability into the prediction of Transmission T(E) with 
XGBR:dAMP, XGBR:dTMP, and XGBR:dGMP Models, respectively

Figure S13. Global ML interpretability analysis with Shap bar and bee-swarm global feature 
importance plot for optimized (a) XGBR:dAMP, (b) XGBR:dTMP, and (c) XGBR:dGMP, 
respectively.
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12. Local Interpretability into the prediction of Transmission T(E) with 
XGBR:dAMP, XGBR:dTMP, and XGBR:dGMP Models, respectively.

Figure S14. Local interpretability analysis with Shap force plot for optimized (a) XGBR:dAMP, 
(b) XGBR:dTMP, and XGBR:dGMP, respectively.
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13. Rotation Dynamics Prediction of Nucleotides with Four Optimized Models

 Figure S15a. The parity plots with calculated RMSE scores and R2 values along with the 
predicted transmission versus DFT calculated transmission. A parallel comparison of DFT versus 
predicted transmission spectra is provided for predicted dynamic configurations of dTMP, 
dGMP, and dCMP nucleotides with the optimized XGBR:dAMP model.
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Figure S15b. The parity plots with calculated RMSE scores and R2 values along with the 
predicted transmission versus DFT calculated transmission. A parallel comparison of DFT versus 
predicted transmission spectra is provided for predicted dynamic configurations of dTMP, 
dGMP, and dCMP nucleotides with the optimized XGBR:dAMP model.
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Figure S15c. The parity plots with calculated RMSE scores and R2 values along with the 
predicted transmission versus DFT calculated transmission. A parallel comparison of DFT versus 
predicted transmission spectra is provided for predicted dynamic configurations of dTMP, 
dGMP, and dCMP nucleotides with the optimized XGBR:dAMP model.
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Figure S15d. The parity plots with calculated RMSE scores and R2 values along with the 
predicted transmission versus DFT calculated transmission. A parallel comparison of DFT versus 
predicted transmission spectra is provided for predicted dynamic configurations of dTMP, 
dGMP, and dCMP nucleotides with the optimized XGBR:dAMP model.
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Figure S16a. The parity plots with calculated RMSE scores and R2 values along with the 
predicted transmission versus DFT calculated transmission. A parallel comparison of DFT versus 
predicted transmission spectra is provided for predicted dynamic configurations of dAMP, 
dGMP, and dCMP nucleotides with the optimized XGBR:dTMP model.
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Figure S16b. The parity plots with calculated RMSE scores and R2 values along with the 
predicted transmission versus DFT calculated transmission. A parallel comparison of DFT versus 
predicted transmission spectra is provided for predicted dynamic configurations of dAMP, 
dGMP, and dCMP nucleotides with the optimized XGBR:dTMP model.
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Figure S16c. The parity plots with calculated RMSE scores and R2 values along with the 
predicted transmission versus DFT calculated transmission. A parallel comparison of DFT versus 
predicted transmission spectra is provided for predicted dynamic configurations of dAMP, 
dGMP, and dCMP nucleotides with the optimized XGBR:dTMP model.
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Figure S16d. The parity plots with calculated RMSE scores and R2 values along with the 
predicted transmission versus DFT calculated transmission. A parallel comparison of DFT versus 
predicted transmission spectra is provided for predicted dynamic configurations of dAMP, 
dGMP, and dCMP nucleotides with the optimized XGBR:dTMP model.
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Figure S17a. The parity plots with calculated RMSE scores and R2 values along with the 
predicted transmission versus DFT calculated transmission. A parallel comparison of DFT versus 
predicted transmission spectra is provided for predicted dynamic configurations of dAMP, 
dTMP, and dCMP nucleotides with the optimized XGBR:dGMP model.
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Figure S17b. The parity plots with calculated RMSE scores and R2 values along with the 
predicted transmission versus DFT calculated transmission. A parallel comparison of DFT versus 
predicted transmission spectra is provided for predicted dynamic configurations of dAMP, 
dTMP, and dCMP nucleotides with the optimized XGBR:dGMP model.
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Figure S17c. The parity plots with calculated RMSE scores and R2 values along with the 
predicted transmission versus DFT calculated transmission. A parallel comparison of DFT versus 
predicted transmission spectra is provided for predicted dynamic configurations of dAMP, 
dTMP, and dCMP nucleotides with the optimized XGBR:dGMP model.
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Figure S17d. The parity plots with calculated RMSE scores and R2 values along with the 
predicted transmission versus DFT calculated transmission. A parallel comparison of DFT versus 
predicted transmission spectra is provided for predicted dynamic configurations of dAMP, 
dTMP, and dCMP nucleotides with the optimized XGBR:dGMP model.
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Figure S18a. The parity plots with calculated RMSE scores and R2 values along with the 
predicted transmission versus DFT calculated transmission. A parallel comparison of DFT versus 
predicted transmission spectra is provided for predicted dynamic configurations of dAMP, 
dTMP, and dGMP nucleotides with the optimized XGBR:dCMP model.
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Figure S18b. The parity plots with calculated RMSE scores and R2 values along with the 
predicted transmission versus DFT calculated transmission. A parallel comparison of DFT versus 
predicted transmission spectra is provided for predicted dynamic configurations of dAMP, 
dTMP, and dGMP nucleotides with the optimized XGBR:dCMP model.
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Figure S18c. The parity plots with calculated RMSE scores and R2 values along with the 
predicted transmission versus DFT calculated transmission. A parallel comparison of DFT versus 
predicted transmission spectra is provided for predicted dynamic configurations of dAMP, 
dTMP, and dGMP nucleotides with the optimized XGBR:dCMP model.
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Figure S18d. The parity plots with calculated RMSE scores and R2 values along with the 
predicted transmission versus DFT calculated transmission. A parallel comparison of DFT versus 
predicted transmission spectra is provided for predicted dynamic configurations of dAMP, 
dTMP, and dGMP nucleotides with the optimized XGBR:dCMP model.
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14. Eigenchannel Wavefunctions for the Sharp Transmission Peaks

Figure S19. The wave function (WFs) studies show the frontier molecular orbitals which are 
responsible for the electron transport through the nanopore device.
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15. ML Predicted Sensitivity of Nucleotides

Figure S20. The ML sensitivity of the nucleotides calculated at the energy of  =  0.265 𝐸 ‒ 𝐸𝐹 ‒
eV from the predicted transmission T(E) of XGBR:dGMP, and XGBR:dCMP model.
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16. Ternary Classification Report

Figure S21. The ternary confusion matrix of classification with the true nucleotides and 
predicted nucleotides.
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Figure S22. The machine learning classification report showing precision, recall, and F1 score is 
tabulated for all the considered ternary combinations.

17. Binary Classification Report

Figure S23. The confusion matrix of binary classification with the true nucleotides and predicted 
nucleotides.

Figure S24. The machine learning classification report showing precision, recall, and F1 score is 
tabulated for all six possible binary combinations.
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