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1. Guide to supplementary Videos:

Video S1: Video shows the head-forward motion of micromotors at pH 4 of the 
peroxide medium (5% v/v) under low-intensity UV light irradiation. The video plays 
at 1X speed.

Video S2: Video shows the tail-forward motion of micromotors at pH 8 of the 
peroxide medium (5% v/v) under low-intensity UV light illumination. The video 
plays at 1X speed.

Video S3: Video shows the rotational motion of micromotors at pH 9 of the peroxide 
medium (5% v/v) under low-intensity UV light illumination. The video plays at 1X 
speed.

2. Supplementary figure description and discussion 

2.1 UV-vis absorption analysis: 

Fig. S1 Absorption spectra show the absorbance in the lower wavelength UV region.
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2.2 Strongly tilted state:

2.3 Discussion on MSD data:

  

To understand the quantitative aspect of motion, let’s take the standard expression of the 

mean square displacement (MSD) equation for a 2-dimensional case, which has both 

Brownian motion term and active motion term. 

     The equation can be written as,

                     (1)
𝑀𝑆𝐷 = 4𝐷∆𝑡 +  

𝑣2𝜏𝑅
2
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Where D is the diffusion coefficient, t is the time,

 v is the velocity, and  is the inverse rotational diffusion coefficient.𝜏𝑅

         The inverse rotational diffusion coefficient for our system can be calculated as, 

𝜏𝑅 =  
1

𝐷𝑅

Fig. S2. Strongly tilted state. (a) Phase portrait for bc = -0.5, bi = -0.2, and 190   (b) 𝑈0 =  𝜇𝑚/𝑠.
Particle configuration and concentration field for the same parameters as in (a). The particle has a 
strong tilt towards the wall. The particle has a slow “sliding” speed .|𝑈𝑦| =  0.53 𝜇𝑚/𝑠



Further,

𝜏𝑅 =  
8𝜋𝜂𝑅3

𝐾𝐵𝑇

On solving the equation, we are getting a value of  as around 22 sec for our particle.𝜏𝑅

For Brownian motion, the MSD from equation (1) can be written as,

𝑀𝑆𝐷 = 4𝐷Δ𝑡

For the passive state, the MSD is directly proportional to . From Fig. S3, when the light is Δ𝑡

turned off the micromotors are exhibiting random Brownian motion and we are getting a 

straight-line behavior of the plot.

Over some period when  , the MSD of equation (1) will change to,Δ𝑡 ≪ 𝜏𝑅

𝑀𝑆𝐷 = 4𝐷Δ𝑡 + 𝑣2∆𝑡2

 The equation shows the MSD during propulsion of a particle at the time interval of . Δ𝑡 ≪ 𝜏𝑅

From the expression, MSD is proportional to the square of the time interval and the nature of 

the plot will be parabolic. In our case also, the time interval  is less than that of calculated Δ𝑡

 and in that interval the nature of the curve (see Fig. S3) is parabolic which satisfies the 𝜏𝑅

mathematical equation.  The red curve in Fig. S3 shows the behavior of micromotors when 

the light is turned on. 

The persistence length is the distance over which particle’s motion remains correlated. 

The concept of persistence length helps to describe how long a particle's trajectory tends to 

align with its previous direction before randomness takes over.  The persistent length in one 

direction can be calculated as,

Persistence length,   𝐿 = 𝑠𝑝𝑒𝑒𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑎𝑟𝑡𝑖𝑐𝑙𝑒 ×  𝜏𝑅



By calculating from the MSD plot, the persistence length of micromotors during active 

swimming is found to be around 44 microns. This value is the result of theoretical 

calculations and experimental results are also matching with it. 

Finally, when the , a transition to diffusive regime happened with an enhanced ∆𝑡 ≫ 𝜏𝑅

coefficient of diffusion. At the same time scale the equation (1) changes to

 𝑀𝑆𝐷 = (4𝐷 + 𝑣2𝜏𝑅)∆𝑡

The equation shows a proportionality relation of MSD with time interval and the nature of 

curve will be a straight line. To observe a transition to diffusive regime the condition is 

  , which is not considered in the plot in this study and therefore the condition is not ∆𝑡 ≫ 𝜏𝑅

satisfied. This is the reason we are not observing a transition to the diffusive regime in the 

given MSD plots.

2.4 Observation of tilting state:

Fig. S3 MSD vs. time interval plot for the micromotors during light on (red color) and off (black color) 
conditions in pH 4 peroxide solution (2.5% v/v).  Light on and off condition corresponds to the motile 
(active) and non-motile (Brownian) state of the micromotors respectively.



The tilting of the micromotor during the rotational motion at a high pH as shown in 

Fig. 4c, has been suggested by the theoretical analysis. The measurement or a clear 

confirmation of the tilt angle in experiments is very difficult. Considering the optical 

arrangement that allows the visualization in the X-Y plane, it is not possible to have a clear 

visualization of micromotors in the Z plane which limits the information about the tilt. 

However, it can be noted that because of a tight focus in X-Y plane, any movement/tilt in the 

Z plane will make the micromotor go out of focus and show a distorted or blurred image. We 

can see this in the images in Fig. S4. In the images, we see that the micromotor is very clear 

as well as appears a little bit longer during translation compared to that of the rotational 

motion. This is an indirect indication of the tilt of the micromotors during rotation at high pH.

3. Mathematical formulation of the model

We focus on qualitatively capturing the transition between two states: from fast, 

“head-forward” motion, with the rod axis parallel to the substrate, to tilted, “tail-forward” 

motion. To this end, we use a simple model, common in the active colloids literature, that 

resolves the chemical activity of the particle and hydrodynamic flow of the solution. The 

geometry of the particle is shown in Fig. 5 in the main text. The axis of symmetry of the 

particle is aligned with the z-direction, and the center of the sphere is located at the origin.  

The radius of the spherical “head”  provides a length scale for specifying the particle 𝑅

Fig. S4 The snapshot of a single micromotor during translational and rotational motion.



geometry. The spherical head meets the cylindrical “tail” at  The radius of the 𝑧/𝑅 = 0.8.

cylinder is  The cylinder is capped by a hemisphere, with its base located at 𝑅𝑐 = 0.6𝑅.

. The cylindrical region of the particle, as well as its small hemispherical cap, will (0,0,4.4𝑅)

be regarded as chemically active TiO2, and the rest of the particle (the open sphere) will be 

considered chemically inert silica. We will consider this particle in free space (unbounded 

solution) and confined by a hard planar wall located at z = 0. When we consider a particle 

near a planar wall, the center of the sphere (no longer located at the origin) will define the 

particle position ), where  is the height of the particle of the wall. The angle of �⃗�𝑝 = (0,0,ℎ ℎ

the sphere-to-hemisphere axis with respect to the wall normal is . For example,  for a 𝜃 𝜃 = 0

particle with its axis aligned with the wall normal, and with its spherical head close to the 

wall. Likewise,  for a particle with its axis parallel to the wall.  𝜃 = 90°

Now we turn to the chemical activity of the particle. While it is possible to implement 

the redox reaction scheme in Eq. 1 (main text) in the framework of our model, it would 

introduce additional modeling considerations, e.g., which regions of the “tail” to designate as 

cathode, and which as anode. Instead, we choose to coarse-grain the details of the reaction 

scheme in Eq. 1, and we approximate that the entire “tail” of the particle as the source of a 

chemical “product,” emitted at a steady and spatially uniform rate. The distribution of the 

reaction product in the solution is governed by Laplace’s equation, , where  is the ∇2𝑐 = 0 𝑐(�⃗�)

concentration (number density) of the reaction product at a location  in the solution. The �⃗�

concentration is subject to the boundary conditions  on the tail,  on ‒ 𝐷∇𝑐 ∙ �̂� = 𝜅 ∇𝑐 ∙ �̂� = 0

the spherical “head,” and  as . Additionally, for a particle near a planar wall, 𝑐(�⃗�)→0 |�⃗�|→∞

 on the wall. Here, is the diffusion coefficient of the product molecule, the ∇𝑐 ∙ �̂� = 0 𝐷 

surface normal is defined to point into the liquid solution, and  is the rate of production �̂� 𝜅

(per unit time, per unit area) of the product molecule. To solve Laplace’s equation, we mesh 



the surface of the particle and use the boundary element method. When we wish to account 

for the planar wall, we use the appropriate Green’s function. The concentration is obtained in 

terms of a characteristic concentration .𝑐0 = |𝜅𝑅/𝐷|

Next, we consider the hydrodynamic flow. This flow is governed by the Stokes 

equation, , where  is the pressure in the fluid,  is the fluid ‒ ∇𝑝 +  𝜇∇2�⃗� = 0 𝑝(�⃗�) �⃗�(�⃗�)

velocity, and  is the dynamic viscosity of the solution, and the incompressibility condition, 𝜇

. The flow is subject to the boundary conditions  on ∇ ∙ �⃗� = 0 �⃗� = �⃗� +  Ω⃗ × (�⃗� ‒ �⃗�𝑝) + �⃗�𝑠(�⃗�)

the surface of the particle and   as . Additionally, for a particle near a planar �⃗�(�⃗�)→0 |�⃗�|→∞

wall,  on the wall. Here,  and  are the (unknown) translational and angular velocities, �⃗� = 0 �⃗� Ω⃗

respectively, of the particle. The quantity , the so-called slip velocity, provides the �⃗�𝑠(�⃗�)

interfacial actuation that drives particle motion. It is obtained from solution of the previous 

problem by . Here, the quantity , the so-called surface mobility, �⃗�𝑠(�⃗�) =  ‒ 𝑏(�⃗�)∇||𝑐 𝑏(�⃗�)

encapsulates the effective, molecular scale interaction between the particle surface and the 

product molecule. We assume that it takes piecewise constant values:  on the inert 𝑏 = 𝑏𝑖 𝑏0

spherical head, and  on the catalytic tail, where  is a characteristic value of the 𝑏 = 𝑏𝑐 𝑏0 𝑏0

surface mobility that carries the dimensions. (The quantities  and are dimensionless.) The 𝑏𝑖 𝑏𝑜

surface gradient operator is defined by . The equations are closed by writing a ( �⃡� ‒ �̂��̂�) ∙ ∇

force balance condition, , and torque balance condition, . Here, �⃗�𝐻 + �⃗�𝑒 = 0 �⃗�𝐻 + �⃗�𝑒 = 0

 is the hydrodynamic force on the particle, where the integral is taken over 
�⃗�𝐻 = ∫�⃡� ∙ �̂� 𝑑𝑆

the particle surface and  is the Newton stress tensor. The quantity  �⃡� =‒ 𝑝 Ι⃡ + 𝜇(∇�⃗� + ∇�⃗�𝑇) �⃗�𝑒

represents any external forces on the particle. Likewise,  is the 
�⃗�𝐻 = ∫(�⃗� ‒ �⃗�𝑝) × �⃡� ∙ �̂� 𝑑𝑆

hydrodynamic torque on the particle, and represents any external torques exerted on the �⃗�𝑒 



particle. The equations can be solved numerically for  and  by using the Lorentz reciprocal �⃗� Ω⃗

theorem and the boundary element method, as detailed in previous work. The velocity is 

obtained in terms of a characteristic velocity  For a particle in free space with 𝑈0 = |𝑏0𝜅/𝐷| .

 and , we numerically obtain the free space velocity as a function of the surface �⃗�𝑒 = 0 �⃗�𝑒 = 0

chemistry parameters, . This relation allows us to connect 𝑈𝑓𝑠/𝑈0 =  0.0943𝑏𝑖 ‒ 0.0298 𝑏𝑐

our numerical calculations with experimental observations. If a characteristic experimental 

velocity of the particle, in meters per second, is , then the relation  gives  𝑣𝑓 𝑈0 = |𝑣𝑓/𝑈𝑓𝑠| 𝑈0

with units of meters per second. 

For a particle near a wall, we include external forces and external torque. Specifically, 

we account for gravitational effects (buoyant weight and gravitational torque), and also 

include a short-ranged repulsive force and torque from the wall. The buoyant weight  is �⃗�𝑔

approximated as the buoyant weight of a silica sphere of radius  and density 𝑅 =  0.5 𝜇𝑚

 in water ( ), plus the buoyant weight of a 𝜌𝑆𝑖𝑂2 = 2196 𝑘𝑔/𝑚3 𝜌𝐻2𝑂 = 1000 𝑘𝑔/𝑚3

cylindrical rod with radius  and density . For the gravitational 𝑅𝑐 = 0.8𝑅 𝜌𝑇𝑖𝑂2 = 4000 𝑘𝑔/𝑚3

torque with respect to the sphere center , we use the weight of the rod and the lever arm �⃗�𝑔

, where  is the length of the rod. Concerning the short-ranged repulsive 𝑅 + 𝐿/2 𝐿 = 2 𝜇𝑚

force  and torque , which depend on the configuration of a particle, we adopt �⃗�𝑒𝑣(ℎ,𝜃) �⃗�𝑒𝑣(ℎ,𝜃)

a numerical approach, due to the complicated shape of the particle. Specifically, we consider 

a force per unit area on the particle surface, , where  is �⃗�𝐸𝑉 =‒ 𝐹0(�̂� ∙ �̂�) 𝐻( ‒ (�̂� ∙ �̂�)) 𝑒 ‒ 𝑧/𝐻
𝐻

the Heaviside step function and  is chosen as the length scale of the force. The 𝐻 = 0.1𝑅

factors of  account for the orientation of different patches of particle surface with (�̂� ∙ �̂�)

respect to the wall normal; the step function ensures that the areas of the particle facing away 

from the wall do not contribute to the repulsive force. This force is numerically integrated 



over the meshed surface of the particle to obtain the repulsive force and torque. The prefactor 

 is chosen in non-dimensional form to be .𝐹0 𝐹0/𝜇𝑈0𝑅 = 500

4. Tail length effect

In the framework of the model, we briefly consider the effect of changing the tail 

length for a particle in unbounded solution. In Fig. S5, we show the dimensionless 

contributions of the inert face (black curve with diamonds) and the cap  (red curve with �̃�𝑖 �̃�𝑐

squares) to the free space velocity as a function of the dimensionless particle end-to-end 

distance . These quantities are defined by the equation , 𝐿/𝑅 𝑈𝑓𝑠/𝑈0 =  𝑏𝑖 �̃�𝑖 + 𝑏𝑐 �̃�𝑐

exploiting the superposition principle. Thus, for the end-to-end distance   considered 𝐿/𝑅 = 6

in the modeling in the main text,  and . �̃�𝑖 = 0.0943 �̃�𝑐 =‒ 0.0298

In Fig. S5, it is apparent that and   have different functional dependencies on the �̃�𝑐 �̃�𝑖

end-to-end distance for the distances considered. This difference opens the possibility of 

obtaining a particle length dependent reversal of motion for a judicious choice of the ratio of 

dimensionless surface mobilities . Indeed, an example of such a reversal is shown in 𝑏𝑖/𝑏𝑐

Fig. S5 for  (blue curve with circles). On the other hand, for the particle lengths 𝑏𝑖/𝑏𝑐 = 0.3

considered, we obtain this reversal in a relatively narrow band of parameters: 

. The chemi-osmotic mechanism hypothesized in Nicholls et al. may be 0.2 < 𝑏𝑖/𝑏𝑐 < 0.36

less dependent on fine-tuning of microscopic parameters. Overall, these findings point to the 

need for continued studies that combine modeling and experiments to unravel the dependence 

of motion reversal and other phenomena on the various physical mechanisms that contribute 

to particle motion.



Fig. S5 Tail length dependence of the contribution of the cap (red curve with squares) 
and the inert face (black curve with diamonds) to the velocity of a particle in 
unbounded solution. A linear superposition that gives reversal of motion direction is 
also shown (blue curve with circles).


