Supplemental Material for "Device Performance Limit of In-Plane

Monolayer VTe₂/WTe₂ Heterojunction-Based Field-Effect

Transistors"

Xingyi Tan^{1,2}, Qiang Li², Dahua Ren², and Hua-Hua Fu^{3,*}

¹Department of Physics, Chongqing Three Gorges University, Wanzhou, 404100, China ²College of Intelligent systems science and engineering, Hubei Minzu University, Enshi, 445000, China

³School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China

Fig. S1. (a) Band structure of monolayer WTe_2 . (b) Band structure of monolayer VTe_2 by using usual PBE and PBE+U. The band structures of VTe_2 are only a little different using PBE and PBE+U. The value of U are fixed as 2 eV for V [Sci. Rep. 6, 32625 (2016); Phys. Rev. B 50, 16861 (1994)]. Therefore, we use PBE in this work.

Fig. S2. Schematic view of the DG-cold-source VTe_2/WTe_2 -based FET devices covered by ferroelectric layers on the top and bottom gate regions.

Fig. S3. The total DOS and the projected DOS of monolayer VTe_2 . The numerical results show that the total DOSs are formed by $V-3d_z^2$, $V-3d_{xy}$, $V-3d_x^2-y^2$, $Te-5p_x$, $Te-5p_y$, $Te-5p_z$ orbits.

	L _g (nm)	U _L (nm)	SS (mV/de c)	I _{off} (μΑ/μm)	I _{on} (μΑ/μm)	$I_{ m on}/I_{ m off}$	С _t (fF/µ m)	τ (ps)	PDP (fJ/µm)
HP	5	0	141	0.1	1038.63	1.04×10^{4}	0.22	0.41	0.27
		1	81	0.1	2573.05	2.57×10^{4}	0.19	0.14	0.24
		2	63	0.1	1725.78	1.73×10^{4}	0.13	0.14	0.16
		3	55	0.1	1149.72	1.15×10^{4}	0.10	0.17	0.12
	3	0	323	0.1	-	-	-	-	-
		1	168	0.1	100.13	1.00×10^{3}	-	-	-
		2	99	0.1	1329.90	1.33×10 ⁴	0.08	0.12	0.10
		3	76	0.1	986.60	9.87×10 ³	0.07	0.13	0.08
	1	1	617	0.1	-	-	-	-	-
		2	239	0.1	-	-	-	-	-
		3(o-NC)	147	0.1	456.65	4.57×10 ³	0.03	0.12	0.03
		3(w-NC)	118	0.1	1035.98	1.04×10 ⁴	0.04	0.07	0.04
LP	5	0	141	5×10-5	-	-	-	-	-
		1	81	5×10-5	-	-	-	-	-
		2	63	5×10-5	434.17	8.68×10^{6}	0.10	0.45	0.13
		3	55	5×10-5	578.42	1.16×10^{7}	0.07	0.25	0.09
	3	0	323	5×10-5	-	-	-	-	-
		1	168	5×10-5	-	-	-	-	-
		2	99	5×10-5	-	-	-	-	-
		3	76	5×10-5	0.14	1.40×10^{4}	-	-	-
		1	617	5×10-5	-	-	-	-	-
	1	2	239	5×10-5	-	-	-	-	-
		3	147	5×10-5	-	-	-	-	-
ITRS HP 2028 ITRS LP 2028	5.1	-	-	0.1	900	9.00×10 ³	0.6	0.423	0.24
	5.9	-	-	5×10-5	295	5.90×10 ⁶	0.69	1.493	0.28

Table S1. The basic key parameters of the DG-cold-source VTe_2/WTe_2 -based FET devices with a 5-nm L_g versus the criteria required by the 2028 needs of the ITRS 2013 for the high-performance and low-power-dissipation applications.

 L_g : the gate length. U_L : the underlap length. SS: the subthreshold swing. I_{off} : the off-state current. I_{on} : the on-state current. C_g : the gate capacitance. τ : the delay time. PDP: the power dissipation.