Electronic Supplementary Information (ESI) for

Highly efficient degradation of polyesters and polyethers by decatungstate photocatalysis

Chifeng Li, Chen Gu, Kazuya Yamaguchi and Kosuke Suzuki*

Department of Applied Chemistry, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan. E-mail: ksuzuki@appchem.t.u-tokyo.ac.jp.

Contents	
1. Experimental Section	S1–S2
2. Fig. S1–S4	S3–S4
3. Table S1–S3	S5–S7
4. References	S8

Experimental Section

Reagents. Acetonitrile (Kanto Chemical), Na₂WO₄·2H₂O (Nippon Inorganic Color and Chemical), TiO₂ ST-01 (Ishihara Sangyo), TiO₂ P25 (Nippon Aerosil, JRC-TIO-17), Ru(bpy)₃Cl₂·6H₂O (Tokyo Chemical Industry), eosin Y (Sigma-Aldrich), methylene blue (Tokyo Chemical Industry), 5,10,15,20-Tetraphenyl-21H,23H-porphyrin (tetraphenyl porphyrin, Fujifilm Wako), 2,2,6,6tetramethylpiperidine 1-oxyl (TEMPO, Tokyo Chemical Industry), 3,5-di-*tert*-butyl-4hydroxytoluene (BHT, Tokyo Chemical Industry), polycaprolactone (PCL, Sigma-Aldrich), poly(1,4-butylene adipate) (PBA, Sigma-Aldrich), cellulose acetate (CA, Sigma-Aldrich), poly(tetrahydrofuran) (PTHF, Sigma-Aldrich), poly(propylene glycol) (PPG, Sigma-Aldrich), poly(methyl methacrylate) (PMMA, Sigma-Aldrich), and polyethylene glycol (PEG, Tokyo Chemical Industry) were obtained from the respective suppliers. TBA₄[W₁₀O₃₂] (TBA**W10**),¹ TBA₃[α -PW₁₂O₄₀],² TBA₅[α -PV₂W₁₀O₄₀],³ TBA₄H[γ -PV₂W₁₀O₄₀],⁴ TBA₄H₂[γ -SiV₂W₁₀O₄₀],⁵ and $TBA_3H_3[V_{10}O_{28}]^6$ were synthesized according to the reported procedures, and characterized by CSI mass, IR, and/or NMR spectra.

Instruments. IR spectra were measured on a JASCO FT/IR-4100 spectrometer using KCl disks. CSI mass spectra were recorded on a JEOL JMS-T100CS spectrometer. NMR spectra were recorded on a JEOL ECA-500 spectrometer (¹H, 500.16 MHz) using 5 mm tubes. The number average molecular weights (M_n) and weigh average molecular weights (M_W) were determined by gel permeation chromatography (GPC; Shimadzu LabSolutions system, LC-20AD, CTO-20AC column oven, Shodex RI Detector RI-504, two sets of TOSOH TSKgel superHM-N columns (6.0 mm I.D. × 15 cm, 3 µm). For the analysis, samples were dissolved in tetrahydrofuran (THF, concentration ~ 10 mg/mL), and THF was used as the mobile phase at a flow rate of 0.6 mL/min at 25 °C. Calibration of the GPC analysis was carried out using polystyrene standard kit (TOSOH PStQuick E and F). The program allows calculating from the differential distribution curve of molecular weights, M_n , M_w , M_z and other parameters.

Entry	Catalyst	Time (h)	$M_{\rm n} ({\rm kg}\;{ m mol}^{-1})$	$M_{\rm w}$ (kg mol ⁻¹)	$M_{ m w}/M_{ m n}$	$(M_{w0}-M_W)/M_{w0}$ (%)
1	TBA W10	0	13.7	22.0	1.61	0
2		1	3.21	6.80	2.12	69
3		2	1.76	3.12	1.78	86
4		4	1.20	1.87	1.56	91
5	W/O	4	12.6	21.6	1.71	2

Fig. S1 Reaction profile for the degradation of PCL by TBAW10 photocatalysis. Reaction conditions: PCL (40 mg), with or without TBAW10 (10 wt%), acetonitrile (4 mL), photo-irradiation (xenon lamp, $\lambda > 350$ nm), O₂ (1 atm), 4 h.

Fig. S2 A photograph of a polymer degradation experiment under sunlight on July 31, 2023, for 5 h (10:25 AM – 3:25 PM) at the University of Tokyo, Tokyo, Japan (35°42'53″N 139°45'34″E).

Fig. S3 ¹H NMR spectra of the reaction solution of PCL degradation by TBA**W10** photocatalysis in acetonitrile- d_3 . (a) Before reaction, (b) after photo-irradiation for 4 h.

Fig. S4 IR spectra of TBAW10 (a) before and (b) after the PCL degradation in acetonitrile.

Table S1	Degradation	of PCL	using	different	amounts	of TBA	W10 ^{<i>a</i>}

		TBA W10	degraded products	
	PCL PCL	photo-irradiation O ₂ , 4 h		
^a Reactio	n conditions: PCL (40 mg	g), TBA W10 (0, 0	0.5, 1.0, 2.5, 5.0, 10 wt%),	
Entry	Catalyst (wt%)	$M_{\rm w}~({\rm kg~mol^{-1}})$	$(M_{\rm w0}-M_{\rm w})/M_{\rm w0}$ (%)	
1	(Before reaction)	22.0 ($M_{\rm w0}$)	_	
2	TBA W10 (10)	1.87	91	
3	TBA W10 (5.0)	6.51	70	
4	TBA W10 (2.5)	8.64	61	
5	TBA W10 (1.0)	16.0	27	
6	TBA W10 (0.5)	18.4	16	
7	W/O	21.6	2	

acetonitrile (4 mL), photo-irradiation (xenon lamp, $\lambda > 350$ nm), O₂ (1 atm), 4 h.

$ \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$						
Entry	Catalyst	Radical scavenger	$M_{\rm w}~({\rm kg~mol^{-1}})$	$(M_{w0}-M_w)/M_{w0}$ (%)		
1	(Before reaction)	W/O	22.0 ($M_{\rm w0}$)	_		
2	TBA W10	W/O	1.87	91		
3	W/O	TEMPO	20.8	5		
4	TBA W10	TEMPO	21.2	3		
5	W/O	BHT	14.4	34		
6	TBAW10	BHT	6.68	70		

Table S2 Degradation of PCL by TBAW10 photocatalysis in the presence of radical scavengers^a

TBA**W10**

^aReaction conditions: PCL (40 mg), TBAW10 (10 wt%), radical scavenger (100 wt%), acetonitrile (4 mL), photo-irradiation (xenon lamp, $\lambda > 350$ nm), O₂ (1 atm), 4 h.

Entry	Polymer	Catalyst	$M_{\rm w}$ (kg mol ⁻¹)	$(M_{\rm w0}-M_{\rm w})/M_{\rm w0}$ (%)
1	PCL	W/O (before reaction)	22.0 ($M_{\rm w0}$)	_
2	PCL	W/O	21.6	2
3	PCL	TBA W10	1.87	91
4	PBA	W/O (before reaction)	$7.30~(M_{ m w0})$	_
5	PBA	W/O	7.14	2
6	PBA	TBA W10	1.16	84
7	PPG	W/O (before reaction)	5.38 (M _{w0})	_
8	PPG	W/O	5.19	4
9	PPG	TBA W10	0.27	95
10	CA	W/O (before reaction)	83.4 (M _{w0})	_
11	CA	W/O	81.7	2
12	CA	TBA W10	6.50	92
13	PTHF	W/O (before reaction)	9.22 (M _{w0})	_
14	PTHF	W/O	8.93	3
15	PTHF	TBA W10	0.15	98
16	PMMA	W/O (before reaction)	65.0 (M _{w0})	_
17	PMMA	W/O	63.5	2
18	PMMA	TBA W10	18.9	71
19	PEG	W/O (before reaction)	$13.4 (M_{w0})$	_
20^b	PEG	W/O	12.7	5
21^{b}	PEG	Na W10	0.89	93
23 ^c	PEG	W/O, sunlight	12.0	11
24 ^c	PEG	Na W10 , sunlight	0.36	97

Table S3 Degradation of various polymers by W10 photocatalysis^a

^{*a*}Reaction conditions: polymer (40 mg), TBA**W10** (10 wt%), acetonitrile (4 mL), photoirradiation (xenon lamp, $\lambda > 350$ nm), O₂ (1 atm), 4 h. ^{*b*}PEG (40 mg), Na**W10** (3 mg), water (4 mL), photo-irradiation (xenon lamp, $\lambda > 350$ nm), O₂ (1 atm), 2 h. ^{*c*}PEG (40 mg), Na**W10** (3 mg), water (4 mL), sunlight, O₂ (1 atm), 5 h.

References

- 1 M. Fournier. Inorg. Synth., 1990, 27, 81.
- 2 E. Takahashi, K. Kamata, Y. Kikukawa, S. Sato, K. Suzuki, K. Yamaguchi and N. Mizuno, *Catal. Sci. Technol.*, 2015, 5, 4778.
- 3 W.-L. Huang, L. Todaro, G. P. A. Yap, R. Beer, L. C. Francesconi and T. Polenova, J. Am. Chem. Soc., 2004, 126, 11564.
- 4 K. Kamata, K. Yonehara, Y. Nakagawa, K. Uehara and N. Mizuno, Nat. Chem., 2010, 2, 478.
- 5 Y. Nakagawa, K. Kamata, M. Kotani, K. Yamaguchi and N. Mizuno, *Angew. Chem.*, *Int. Ed.*, 2005, 44, 5136.
- 6 W. G. Klemperer and M. Yaghi, Inorg. Synth., 1990, 27, 83.