Electronic Supplementary Material (ESI) for Nanoscale.

Supplemental Material

Carrier mobility and superconducting properties in monolayer oxygen-terminated functionalized MXene $\mathrm{Ti}_{2} \mathrm{CO}_{2}$

Reza Shayanfar, ${ }^{1}$ Mohammad Alidoosti, ${ }^{2}$ Davoud Nasr Esfahani, ${ }^{2,3}$ and Mahdi Pourfath ${ }^{1,4, *}$
${ }^{1}$ School of Electrical and Computer Engineering,
College of Engineering, University of Tehran, Tehran 14395-515, Iran
${ }^{2}$ Pasargad Institute for Advanced Innovative Solutions (PIAIS), Tehran 19916-33361, Iran
${ }^{3}$ Department of Converging Technologies, Khatam University, Tehran 19916-33357, Iran ${ }^{4}$ Institute for Microelectronics/E360, TU Wien, A-1040 Vienna, Austria

(Dated: October 17, 2023)

FIG. S1: The scattering rates of the two most effective optical modes ($\nu=10$ and 14) as functions of energy for the (a) n- and (b) p-type ($0.01 \mathrm{el} /$ cell) $\mathrm{Ti}_{2} \mathrm{CO}_{2}$. The temperature was assumed to be 300 K .

[^0]

FIG. S2: Valley-dependent hole scattering rates $(1 / \mathrm{ps})$. Hole concentration and temperature are assumed to be $0.01 \mathrm{el} / \mathrm{cell}$ and 300 K , respectively. The possible intra/inter-valley transitions are illustrated in (a-d).

FIG. S3: The Fermi surface of the valance band consisting of $\Gamma_{2 V}$ valley.

FIG. S4: Isotropic Eliashberg spectral function $\left(\alpha^{2} F\right)$ and phonon density of states (PhDOS) for monolayer $\mathrm{Ti}_{2} \mathrm{CO}_{2}$ within both the rigid and the jellium regimes. The rigid band $\alpha^{2} F$ and PhDOS of (n-type) $-0.01 \mathrm{el} / \mathrm{cell}(\mathrm{a})$ and (p -type) $+0.01 \mathrm{el} / \mathrm{cell}$ (b) are illustrated. (c) and (d) are the same as (a) and (b) except in the jellium regime.

[^0]: *Electronic address: pourfath@ut.ac.ir

