Supplemental Material

Carrier mobility and superconducting properties in monolayer oxygen-terminated functionalized MXene Ti_2CO_2

Reza Shayanfar,¹ Mohammad Alidoosti,² Davoud Nasr Esfahani,^{2,3} and Mahdi Pourfath^{1,4,*}

¹School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran 14395-515, Iran ²Pasargad Institute for Advanced Innovative Solutions (PIAIS), Tehran 19916-33361, Iran ³Department of Converging Technologies, Khatam University, Tehran 19916-33357, Iran ⁴Institute for Microelectronics/E360, TU Wien, A-1040 Vienna, Austria (Dated: October 17, 2023)

FIG. S1: The scattering rates of the two most effective optical modes ($\nu = 10$ and 14) as functions of energy for the (a) n- and (b) p-type (0.01 el/cell) Ti₂CO₂. The temperature was assumed to be 300 K.

^{*}Electronic address: pourfath@ut.ac.ir

FIG. S2: Valley-dependent hole scattering rates (1/ps). Hole concentration and temperature are assumed to be 0.01 el/cell and 300 K, respectively. The possible intra/inter-valley transitions are illustrated in (a-d).

FIG. S3: The Fermi surface of the valance band consisting of Γ_{2V} valley.

FIG. S4: Isotropic Eliashberg spectral function $(\alpha^2 F)$ and phonon density of states (PhDOS) for monolayer Ti₂CO₂ within both the rigid and the jellium regimes. The rigid band $\alpha^2 F$ and PhDOS of (n-type) -0.01 el/cell (a) and (p-type) +0.01 el/cell (b) are illustrated. (c) and (d) are the same as (a) and (b) except in the jellium regime.