Supplementary Information

Anchoring Pt-based alloy on the oxygen-vacancy-defected MXene nanosheet for

efficient hydrogen evolution reaction and oxygen reduction reaction

Qin Zhao^a, Yu Zhang^a, Changwang Ke^a, Xiaofei Yang^a, Weiping Xiao^{a,b*}

^a College of Science, Institute of Materials Physics and Chemistry, Nanjing Forestry

University, Nanjing 210037, China

^b Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education),

College of Chemistry, Nankai University, Tianjin 300071, China

*Corresponding author

E-mail address: wpxiao@njfu.edu.cn

Fig. S1 SEM images of (a) $Pt_3Ni/MXene-500$, (b) $Pt_3Ni/MXene-900$, (c) $Pt_3Co/MXene-500$, (d) $Pt_3Co/MXene-900$.

Fig. S2 TEM images of Pt₃Ni/MXene-700.

Fig. S3 Particle size distribution of Pt₃Ni/MXene-700 and Pt₃Co/MXene-700 catalyst.

Fig. S4 The zeta potentials of MXene and Pt₃Co/MXene-700.

Fig. S5 XRD patterns of MAX and MXene.

Fig. S6 XRD patterns of (a) Pt₃Ni/MXene-300 and (b) Pt₃Co/MXene-300.

Fig. S7 (a) XRD patterns of Pt₃Ni/MXene-500, 700, 900 catalysts; (b) XRD patterns of Pt₃Co/MXene-500, 700, 900 catalysts.

Fig. S8 XPS survey spectra of Pt₃Co/MXene-700 catalyst.

Fig. S9 (a) XPS survey spectra of Pt₃Ni/MXene-700. High-resolution XPS spectra of (b) Ti 2p, (c) Ni 2p and (d) Pt 4f of Pt₃Ni/MXene-700 catalyst.

Fig. S10 The ORR performance of MXene, MXene-700, $Pt_3M/MXene-300$ (M = Co, Ni) in (a) 0.1 M HClO₄ and (b) 0.1 M KOH.

Fig. S11 The HER performance of MXene, MXene-700, $Pt_3M/MXene-300$ (M = Co, Ni) in (a) 0.1 M HClO₄ and (b) 0.1 M KOH.

Fig. S12 CV curves in (a) 0.1 M HClO_4 and (b) $0.1 \text{ M KOH of Pt}_3\text{Co/MXene catalysts}$; CV curves in (c) 0.1 M HClO_4 and (d) $0.1 \text{ M KOH of Pt}_3\text{Ni/MXene catalysts}$.

Fig. S13 (a, b) HER performance of $Pt_3Co/MXene-500$, 700, 900 catalysts in 0.1 M HClO₄ and 0.1 M KOH, (c, d) HER performance of $Pt_3Ni/MXene-500$, 700, 900 catalysts in 0.1 M HClO₄ and 0.1 M KOH.

Fig. S14 Nyquist plots of Pt_3M/MX ene-500, 700, 900 (M = Co, Ni) in 0.1 M HClO₄.

Fig. S15 Chronopotentiometric curve of $Pt_3Co/MXene-700$ measured at 10 mA cm⁻² in 0.1 M KOH.

Fig. S16 Chronopotentiometric curve of $Pt_3Ni/MXene-700$ measured at 10 mA cm⁻² in 0.1 M HClO₄ and KOH.

Fig. S17 Nyquist plots of $Pt_3Co/MXene-700$ before and after stability testing in 0.1 M $HClO_4$ and 0.1 M KOH.

Catalysts	a=b=c	Degree of lattice contraction
Pt	3.92	١
Pt ₃ Co/MXene-700	3.878	10.71%
Pt ₃ Ni/MXene-700	3.911	2.3%

Table S1. The degree of Pt shrinkage in Pt alloys of $Pt_3Co/MXene-700$ and $Pt_3Ni/MXene-700$ catalysts.

Catalysts	$E_{1/2}$ (H)	Tafel	$E_{1/2}$ (OH)	Tafel	Ref.
	(vs. RHE)	slope	(vs. RHE)	slope	
Pt ₃ Co/MXene-700	0.897 V	88.77	0.901 V	69.89	This work
Pt ₃ Ni/MXene-700	0.889 V	104.22	0.897 V	91	This work
Pt/MXene	0.892 V	95.82	\	١	1
Fe-N-C@MXene	0.777 V	78	0.887 V	88	2
TiCN-BCN-Co	١	\	0.81 V	90.8	3
NiCo-LDH/Ti ₃ C ₂	١	\	0.66 V	90	4
MnCo ₂ O ₄ /	١	\	0.876 V	63	5
NGQD/MXene					
Fe/Co-	١	\	0.85 V	76	6
CNT@MXene					
PtNi/NC	١	\	0.82 V	80.5	7
Co/Co ₃ O ₄ @C	0.823 V	85.8	0.672 V	100.4	8
Pt _{SA} -PtCo NCs/N-	0.89 V	\	0.86 V	74	9
CNT-900					
Pt ₄ Co@NC-900	0.88 V	68	\	١	10
PtCoNG-3500-	0.86 V	\	\	١	11
600/900					
PtCu HNF	0.87 V	78.8	\	\	12
Co/CeO ₂	١	\	0.75 V	80	13

Table S2. Comparison of the ORR performance of recent reported catalysts in 0.1 M $HClO_4$ (H) and 0.1 M KOH (OH) solution.

Catalysts	Overpotential	Tafel	Overpotential	Tafel	Ref.
	(η ₁₀ , H)	slope	(<i>η</i> ₁₀ , OH)	slope	
Pt ₃ Co/MXene-700	1.2	27.11	82.5	76.01	This
					work
Pt ₃ Ni/MXene-700	4.6	36.78	88.3	76.12	This
					work
$Pt/Ti_3C_2T_x-550$	32.7	32.3	\	\	14
IrCo _{0.14}	16	28.8	\	\	15
IrCo _{0.65}	17	35.3	\	\	16
Pd/OMC	167	68	\	\	17
Pt@PDG4	\	١	55	79.2	18
MoS ₂ -CoNi(OH) ₂	\	\	178	60.9	19
Co/NGC-3	\	\	293	130	20
CMCO NWs	140	39	\	\	21
NiS ₂ /PtNi NWs	15	20	\	\	22
Pd/OMC	167	62	\	\	23

Table S3. Comparison of the HER performance of recent reported catalysts in 0.1 M $HClO_4$ (H) and 0.1 M KOH (OH) solution.

References

- 1 Z. Zhang, C. Liu, Y. Dai, B. Liu, P. Guo, F. Tu, M. Ma, L. Shen, Z. Zhao, Y. Liu, Y. Zhang, L. Zhao and Z. Wang, ACS Appl. Energy Mater., 2022, 5, 14957–14965.
- W.T. Wang, N. Batool, T. H. Zhang, J. Liu, X. F. Han, J. H. Tian and R. Yang, J.
 Mater. Chem. A, 2021, 9, 3952–3960.
- 3 Y. Wang, F. Gu, L. Cao, L. Fan, T. Hou, Q. Zhu, Y. Wu and S. Xiong, *Int J Hydrogen Energy*, 2022, **47**, 20894–20904.
- G. L. Li, S. Cao, Z. F. Lu, X. Wang, Y. Yan and C. Hao, *Appl. Surf. Sci.*, 2022, 591, 153142.
- 5 M. Faraji, S. Yousefzadeh, M. F. Nassar and M. M. A. Zahra, *J. Alloy Compd.*, 2022, **927**, 167115.
- 6 C. Zhang, H. Dong, B. Chen, T. Jin, J. Nie and G. Ma, *Carbon*, 2021, **185**, 17–26.
- X. Chen, J. Guo, J. Liu, Z. Luo, X. Zhang, D. Qian, D. Sun-Waterhouse and G. I.
 N. Waterhouse, J. Phys. Chem. Lett., 2023, 14, 1740–1747.
- 8 Q. Zhang, X. Zhao, X. Miao, W. Yang, C. Wang and Q. Pan, *Int. J. Hydrogen Energy*, 2020, **45**, 33028–33036.
- 9 W. Chen, X. Zhu, W. Wei, H. Chen, T. Dong, R. Wang, M. Liu, K. (Ken) Ostrikov,
 P. Peng and S. Zang, *Small*, 2023, 2304294.
- 10 N. Zhou and Y. Li, Int. J. Hydrogen Energy, 2021, 46, 37884–37894.
- 11 L. Sun, Y. Qin and Y. Yin, J. Power Sources, 2023, 562, 232758.
- 12 G. Ma, X. Zhao, J. Wang, G. Qin, Z. Lu, X. Yu, L. Li, X. Zhang and X. Yang, J. *Electroanal. Chem.*, 2022, **922**, 116756.

- 13 Z. Liu, J. Wan, M. Li, Z. Shi, J. Liu and Y. Tang, *Nanoscale*, 2022, 14, 1997–2003.
- 14 Z. Li, Z. Qi, S. Wang, T. Ma, L. Zhou, Z. Wu, X. Luan, F. Y. Lin, M. Chen, J. T. Miller, H. Xin, W. Huang and Y. Wu, *Nano Lett.*, 2019, **19**, 5102–5108.
- 15 W. Gao, Q. Xu, Z. Wang, M. Wang, X. Ren, G. Yuan and Q. Wang, *Electrochim. Acta*, 2020, **337**, 135738.
- 16 L. Fu, X. Zeng, G. Cheng and W. Luo, ACS Appl. Mater. Interfaces, 2018, 10, 24993–24998.
- J. G. Kim, B. Lee, N. N. T. Pham, S. G. Lee and C. Pak, *J. Ind. Eng. Chem.*, 2020, 89, 361–367.
- Z. Li, F. Han, Z. Liu, Q. Peng, Q. D. Wang, M. Sun and G. J. Kang, New J. Chem.,
 2021, 45, 21670–21675.
- 19 Y. Zhang, L. Xue, C. Liang, Y. Chen, J. Liu, C. Shen, Q. Li, Y. Duan, L. Yao, H. Zhang, Y. Cai, C. Tan and Z. Luo, *Appl. Surf. Sci.*, 2021, **561**, 150079.
- J. Li, Y. Kang, D. Liu, Z. Lei and P. Liu, ACS Appl. Mater. Interfaces, 2020, 12, 5717–5729.
- 21 Q. Li, K. Liu, S. Gui, J. Wu, X. Li, Z. Li, H. Jin, H. Yang, Z. Hu, W. Liang and L. Huang, *Nano Res.*, 2022, **15**, 2870–2876.
- 22 G. Wang, X. Huang, H. G. Liao and S. G. Sun, Energ. Fuel., 2021, 8, 6928–6934.
- J. G. Kim, B. Lee, N. N. T. Pham, S. G. Lee and C. Pak, *J. Ind. Eng. Chem.*, 2020, 89, 361–367.