Nanobody-loaded nanobubbles targeting G250 antigen with ultrasound/photoacoustic/fluorescence multimodal imaging capabilities for specifically enhanced imaging of RCC

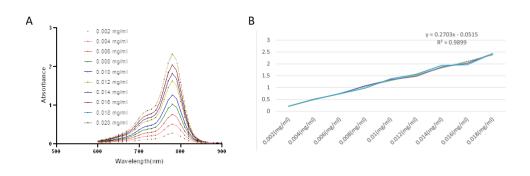
Jiajiu Chen^{a‡}, Jingyi Li^{a‡},Chengjie Zhong^{b‡}, Yi Ling^c, Deng Liu^c, Xin Li^c, Jing Xu^a, Qiuli Liu^a,Yanli Guo^{c#} and Luofu Wang^{a#}

^a Department of Urology, Daping Hospital, Army Medical University, Chongqing 400042, P.R.China
^b The Second Clinical Medical College, Chongqing Medical University, Chongqing 400016, P.R.China
^c Department of Ultrasound, Southwest Hospital, Army Medical University, Chongqing 400038, P.R.China

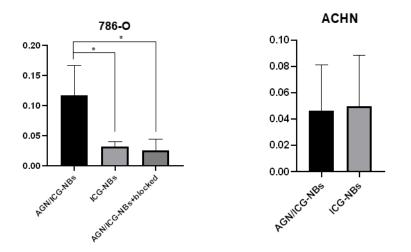
‡ These authors contributed equally to this work.

Corresponding authors

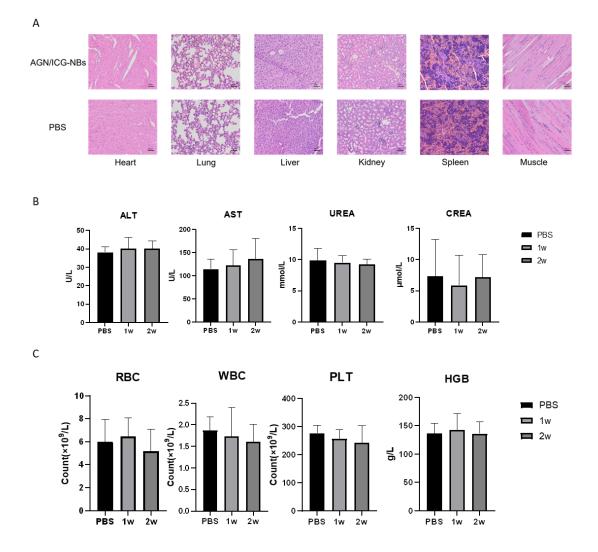
Correspondence:


Yanli Guo

Department of Ultrasound, Southwest Hospital, Army Medical University, Chongqing 400038, P.R.China Tel: +86-13608351873 Email: guoyanli71@aliyun.com


Luofu Wang

Department of Urology, Daping Hospital, Army Medical University, Chongqing 400042, P.R.China Tel: +86-13320350708 Email: <u>wangluofu@aliyun.com</u>


Supplementary Information

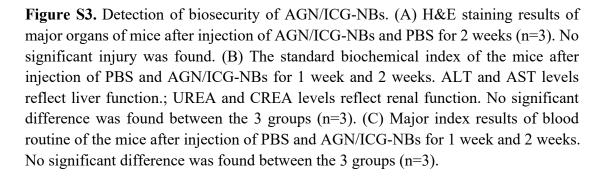


Figure S1. (A) Absorption spectra of AGN/ICG-NBs at different concentrations. (B) The fitting curve of AGN/ICG-NB concentration and absorption value at the optimum wavelength.

Figure S2. Quantification of the fluorescence signal intensity of AGN/ICG-NBs or ICG-NBs surrounding 2 types of tumor cells (* indicates P<0.05)

