Supplementary Information

Converting carbon black into efficient and multi-site ORR electrocatalyst: The importance of bottom-up construction parameters

Rui S. Ribeiro^{*abc}, Marc Florent^a, Juan J. Delgado^{de}, M. Fernando R. Pereira^{bc}, Teresa J. Bandosz^{*a}

^o Department of Chemistry and Biochemistry, The City College of The City University of New York, 160 Convent Avenue, New York, NY 10031, USA. Email: tbandosz@ccny.cuny.edu (T.J. Bandosz).

^b LSRE-LCM - Laboratory of Separation and Reaction Engineering – Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal. E-mail: rsribeiro@fe.up.pt (R.S. Ribeiro).

^c ALICE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.

^d IMEYMAT: Institute of Research on Electron Microscopy and Materials, University of Cádiz, E11510 Puerto Real, Cádiz, Spain.

e Departamento de Ciencia de Materiales, Ingeniería Metalúrgica y Química Inorgánica, University of Cádiz, E11510 Puerto Real, Cádiz, Spain.

Text S1. Chemicals and materials

Carbon black – Black Pearls 2000 (BP) was obtained from Cabot. Melamine (99 wt.%) and thiourea (99 wt.%) were purchased from Alfa-Aesar. Iron (II) acetate and a platinum benchmark catalyst (Pt/C; 20 wt.% of Pt on graphitized carbon) were purchased from Aldrich. D-(+)-glucose monohydrate (for biochemistry), urea (99.5wt.%), iron (III) nitrate nonahydrate (98 wt.%), iron (II) chloride tetrahydrate (99 wt.%), cobalt (II) acetate (98 wt.%), and nickel (II) acetate hydrate (99 wt.%) were obtained from Calbiochem, Amresco, Sigma-Aldrich, Fisher, Spectrum, and Beantown Chemical, respectively. Potassium hydroxide (1.0 mol L⁻¹) was purchased from Thermo Scientific. Nafion D-520 dispersion (5 wt.% in water and 1-propanol) was purchased from Beantown Chemical. Ethanol (99.5 % v/v) was purchased from Terrace Packaging and Chemicals. Methanol (99.8 wt.%) was obtained from Alfa Aesar. Distilled water was used throughout this work.

Text S2. Detailed description of the characterization techniques

 N_2 adsorption-desorption isotherms obtained at – 196 °C (performed in a Micromeritics ASAP 2020 apparatus) were used to derive textural properties of the samples tested. Before analysis, carbons (*ca*. 0.1 g) were outgassed at 120 °C overnight. The specific surface area (S_{BET}) was calculated by the Brunauer–Emmett–Teller (BET) method using adsorption data collected in relative pressures (*P*/*P*₀) between 0.05 and 0.30. The total pore volume (V_{Total}) was determined from the amount adsorbed at a relative pressure of 0.98. Pore size distribution and volume of micropores (V_{Micro}) were obtained using a two-dimensional non-local density functional theory (2-NLDFT), assuming pore wall heterogeneity.¹

Thermogravimetric analysis (TGA) was performed on a TA Instruments SDT Q600 thermal analyzer upon heating the samples (*ca*. 10 mg) from 50 to 1000 °C at 5 °C min⁻¹ under an oxidative (air) flow. The ash content was determined as the residual mass obtained at 1000 °C. Bulk Fe content was estimated assuming that all the Fe in the sample was oxidized to Fe₂O₃ after heating to 1000 °C, as described in Eq. S1. M_{Fe} and $M_{Fe_2O_3}$ represent the molar mass of Fe and Fe₂O₃, respectively.

Bulk Fe/ wt.% = Ash content/ wt.% ×
$$\frac{2 M_{Fe}}{M_{Fe_2O_3}}$$
 (S1)

X-ray photoelectron spectroscopy (XPS) analysis was performed on a Physical Electronics PHI 5000 VersaProbe II spectrometer using a Al K α X-ray source (1486.6 eV), powered at 15 kV (90 W). For data analysis, the charge correction was based on the C 1s peak (285 eV). Spectra modelling was performed using Gaussian-Lorentzian peak shape fitting after Shirley background subtraction, using XPSPEAK4.1 software.

The characterization of the samples at the sub-nanometric scale was mainly performed by high-resolution high angle annular dark field scanning transmission electron microscopy (HR-HAADF-STEM) imaging using a double aberration corrected (AC), as well as monochromated, FEI Titan³ Themis 60–300 microscope operated at 200 kV. We also conducted elemental mapping using energy dispersive X-ray spectroscopy (EDS) to determine the distribution of Fe on Fe_{0.06, low G}-N@BP. ImageJ software was used to estimate the diameter of the Fe particles at the surface of Fe_{0.06}-N@BP and Fe_{0.06, low G}-N@BP (at least 200 counts were performed for each sample).

Text S3. Detailed description of the procedures used for electrochemical measurements and characterization

A conventional three-electrode configuration was used in all electrochemical experiments. The measurements were carried out on a WaveDriver 40 bipotentiostat (Pine Research Instrumentation). A rotating ring-disk electrode (RRDE) with a glassy carbon disk and a gold ring electrode (5 mm diameter and 25.6% collection efficiency) was used as a working electrode; Ag/AgCl (4 mol L⁻¹ KCl) and a graphite rod were a reference and counter electrode, respectively.

The potential collected with reference to Ag/AgCl was converted to a reversible hydrogen electrode (RHE) potential (E_{RHE}) as described in Eq. S2, where $E_{Ag/AgCl}$ is the experimental working potential and $E_{Ag/AgCl}^{0}$ is the potential of the Ag/AgCl reference electrode vs. RHE as provided by the manufacturer (0.199 V at 20 °C).

$$E_{\rm RHE} = E_{\rm Ag/AgCl} + 0.059 \,\mathrm{pH} + E_{\rm Ag/AgCl}^{\rm U} \tag{S2}$$

KOH (0.1 mol L⁻¹) saturated with N₂ or O₂ (by bubbling the corresponding gas for 60 min) was employed as an electrolyte solution (room temperature = 20 °C) in all electrochemical experiments. Cyclic voltammetry (CV) measurements were performed without rotation, at a scan rate of 5 mV s⁻¹; linear sweep voltammetry (LSV) measurements were performed at a fixed scan rate of 5 mV s⁻¹, with rotation speeds of 0, 400, 800, 1200, 1600, and 2000 rpm; and chronoamperometry measurements were performed at constant potential (0.4 V vs. RHE) and rotation speed (1600 rpm), either for 24 h (to study electrocatalytic stability), or for 20 min having 2.5 mL of methanol rapidly spiked after *ca*. 10 min of the experiment (to study electrocatalyst resistance to methanol cross-over). The N₂/O₂ was supplied above the electrolyte, in the headspace of the

electrochemical cell, during the CV and LSV measurements. On the contrary, chronoamperometry tests were performed with O₂ bubbling in the electrolyte during the whole experiments.

In the case of LSV, the experimental current was obtained by subtracting the current obtained in N₂-saturated electrolyte from that obtained in O₂-saturated electrolyte, allowing to determine the following ORR performance indicators: potential needed to achieve a current density of 0.1 mA cm⁻² ($E_{0.1}$); onset potential (E_{onset} ; defined as the minimum of the second derivative of the current density-potential curve);² half-wave potential ($E_{1/2}$; defined as the maximum of the first derivative of the current density-potential curve); limiting current density (JL; defined as the current density at 0.15 V vs. RHE); hydrogen peroxide (H_2O_2) formation (H_2O_2 (%); Eq. S3); and average number of electrons transferred during the ORR (n_E ; Eq. S4). i_R and $i_{\rm D}$ are the ring and disc currents obtained in the LSV experiments performed at 1600 rpm, respectively; and N is a collection efficiency as provided by the supplier (25.6%).

$$H_{2}O_{2}(\%) = \frac{2 \times \frac{I_{R}}{N}}{i_{D} + \frac{I_{R}}{N}} \times 100$$
(S3)
$$n_{e} = 4 \times \frac{i_{D}}{i_{D}}$$
(S4)

 $i_{\rm D} + \frac{N}{N}$ Tafel plots were obtained from LSV data (1600 rpm) in the kinetically controlled region nearby E_{onset} and slopes were determined by linear fitting. The exchange current density (J_0) was calculated from the Tafel plots, as the point where the yintercept equals the O_2/H_2O standard reduction potential ($E^0_{O_2/H_2O}$ = 1.229 V vs. RHE).

Table S1 Summary of oxygen reduction reaction (ORR) results obtained on carbon black electrocatalysts prepared with different iron precursors: potential needed to achieve a current density of 0.1 mA cm⁻² ($E_{0.1}$), onset potential (E_{onset}), halfwave potential $(E_{1/2})$, limiting current density (J_L) , hydrogen peroxide (H_2O_2) formation, number of electrons transferred (n_e) , and stability^a.

Sample	<i>E</i> _{0.1} / V	E _{onset} / V	E _{1/2} / V	J _L ♭/ mA cm⁻²	H ₂ O ₂ ¢/ %	n _e c	Stability ^d /%
BP	0.796	0.772	0.727	3.480	32.1	3.36	76.3
Fe _{Nit} -N@BP	0.935	0.887	0.832	4.317	7.3	3.85	88.2
Fe _{cl} -N@BP	0.938	0.892	0.837	4.434	6.8	3.86	87.4
Fe-N@BP	0.973	0.917	0.852	4.361	4.9	3.90	90.7
Pt/C	0.985	0.882	0.847	4.657	2.2	3.96	98.0

^a All data refers to experiments performed at 1600 rpm; ^b Calculated at 0.15 V vs. RHE; ^c Calculated at 0.4 V vs. RHE; ^d Calculated after 24 h at 0.4 V vs. RHE.

Text S4. Brief description of ORR mechanisms

Oxygen reduction reaction (ORR) in alkaline media can proceed through the direct four-electron pathway (Eq. S5) or the indirect two-electron pathway (Eq. S6); the former being preferred. Regarding the latter, subsequent reduction (Eq. S7) or disproportionation (Eq. S8) of peroxide ions is needed.³

$O_2 + 2H_2O + 4e^- \rightleftharpoons 4OH^-$	(S5))

$$O_2 + H_2O + 2e^- \rightleftharpoons HO_2^- + OH^-$$
 (S6)
 $HO_2^- + H_2O + 2e^- \rightleftharpoons 3OH^-$ (S7)

$$H_{0_2} + H_{20} + 2e \approx 30H$$
 (37)
 $2H_{0_2} \approx 20H^2 + 0_2$ (58)

$$O_2^* \rightleftharpoons 2OH^* + O_2^*$$

Figure S1 X-ray diffraction (XRD) patterns of BP, sample holder (blank) in the absence of a sample, and standard reference pattern of graphite (crystallography open database code: 1200017).

Figure S2 N_2 adsorption-desorption isotherms measured at -196 $^{\circ}$ C on the carbon black electrocatalysts prepared with different iron precursors.

Table S2 Summary of the textural properties of carbon black electrocatalysts prepared with different iron precursors: specific surface area (S_{BET}), micropore volume (V_{micro}), total pore volume (V_{total}), and V_{micro} / V_{total} ratio determined from the N₂ adsorption-desorption isotherms given in Figure S2.

Sample	S _{BET} / m ² g ⁻¹	V _{micro} / cm ³ g ⁻¹	V _{total} / cm ³ g ⁻¹	V _{micro} / V _{total}
BP	1550	0.480	2.641	0.182
Fe _{Nit} -N@BP	1308	0.420	2.150	0.195
Fe _{CI} -N@BP	1117	0.369	1.713	0.216
Fe-N@BP	1075	0.348	1.822	0.191

Figure S3 Pore size distributions of the carbon black electrocatalysts prepared with different iron precursors, as determined from the N₂ adsorption isotherms given in Figure S2.

Figure S4 Thermogravimetric analysis (TGA) results collected in an air atmosphere of the carbon black electrocatalysts prepared with different iron precursors.

Table S3 Ash and Fe contents of carbon black electrocatalysts prepared with different iron precursors, as determined by thermogravimetric analysis (TGA).

Sample	Ashes/ wt.%	Bulk Fe/ wt.%
BP	< 0.1	-
Fe _{Nit} -N@BP	0.8	0.6
Fe _{CI} -N@BP	7.3	5.1
Fe-N@BP	11.5	8.0

Figure S5 Detailed core energy level spectra of the (a-c) C 1s, (d-f) O 1s, (g-i) N 1s, and (j-l) Fe $2p_{3/2}$ regions of (a, d, g, j) Fe_{Nit}-N@BP, (b, e, h, k) Fe_{Cl}-N@BP, and (c, f, I, I) Fe-N@BP. N6, N5, NQ, and NO represent N-pyridinic, N-pyrrolic, N-quaternary, and N-oxidized species, respectively.

Commite	S	Surface concentration/ at.%				Surface concentration/ wt.%			
Sample	С	0	N	Fe	С	0	N	Fe	
Fe _{Nit} -N@BP	95.2	2.6	2.1	0.1	93.7	3.4	2.4	0.5	
Fe _{cl} -N@BP	95.3	3.0	1.4	0.3	93.1	3.9	1.7	1.3	
Fe-N@BP	94.4	3.9	1.4	0.3	91.9	5.0	1.6	1.5	

Table S4 Surface concentration of C, O, N, and Fe determined from the X-ray photoelectron spectroscopy (XPS) analysis of carbon black electrocatalysts prepared with different iron precursors.

Figure S6 Linear sweep voltammetry (LSV) curve obtained on commercial Pt/C at a load of 0.33 mg cm⁻². Experiment carried out in O₂-saturated 0.1 mol L⁻¹ KOH at 1600 rpm.

Figure S7 N_2 adsorption-desorption isotherms measured at -196 °C on the carbon black electrocatalysts prepared to study the role of the synthesis precursors.

Table S5 Summary of the textural properties of carbon black electrocatalysts prepared to study the role of the synthesis precursors: specific surface area (S_{BET}), micropore volume (V_{micro}), total pore volume (V_{total}), and V_{micro} / V_{total} ratio determined from the N₂ adsorption-desorption isotherms given in Figure S7.

Sample	S _{BET} / m ² g ⁻¹	V _{micro} / cm ³ g ⁻¹	V _{total} / cm ³ g ⁻¹	V _{micro} / V _{total}
BP	1550	0.480	2.641	0.182
Fe-N@BP	1075	0.348	1.822	0.191
Feno G-N@BP	1344	0.406	2.552	0.159
Fe@BP	1010	0.287	1.943	0.148
N@BP	1550	0.482	2.613	0.185

Figure S8 Pore size distributions of the carbon black electrocatalysts prepared to study the role of the synthesis precursors, as determined from the N_2 adsorption isotherms given in Figure S7.

Figure S9 Thermogravimetric analysis (TGA) results collected in an air atmosphere of the carbon black electrocatalysts prepared to study the role of the synthesis precursors.

Sample	Ashes/ wt.%	Bulk Fe/ wt.%
BP	< 0.1	-
Fe-N@BP	11.5	8.0
Feno G-N@BP	11.9	8.3
Fe@BP	7.2	5.0
N@BP	< 0.1	-

Table S6 Ash and Fe contents of carbon black electrocatalysts prepared to study the role of the synthesis precursors, as determined by the thermogravimetric analysis (TGA).

Figure S10 Detailed core energy level spectra of the (a-c) C 1s, (d-f) O 1s, (g-i) N 1s, and (j-l) Fe 2p_{3/2} regions of (a, d, g, j) Fe-N@BP, (b, e, h, k) Fe_{no G}-N@BP, and (c, f, I, I) Fe@BP. N6, N5, NQ, and NO represent N-pyridinic, N-pyrrolic, N-quaternary, and N-oxidized species, respectively.

Commis	S	Surface concentration/ at.%				Surface concentration/ wt.%			
Sample	С	0	Ν	Fe	С	0	Ν	Fe	
Fe-N@BP	94.4	3.9	1.4	0.3	91.9	5.0	1.6	1.5	
Fe _{no G} -N@BP	91.6	7.5	0.5	0.4	88.1	9.6	0.6	1.7	
Fe@BP	95.9	3.5	0.1	0.5	93.1	4.5	0.1	2.2	

Table S7 Surface concentration of C, O, N, and Fe determined from the X-ray photoelectron spectroscopy (XPS) analysis of carbon black electrocatalysts prepared to study the role of the synthesis precursors.

Figure S11 Results of the thermogravimetric analysis (TGA) carried out in argon to mimic the conditions used in the thermal treatment employed during the synthesis of the carbon black electrocatalysts: (a) glucose, (b) a mixture containing iron (II) acetate and glucose, and (c) melamine.

Figure S12 Linear sweep voltammetry (LSV) curves of the carbon black electrocatalysts prepared with different precursors of heteroatoms, obtained in O_2 -saturated 0.1 mol L⁻¹ KOH at 1600 rpm. Results obtained with commercial Pt/C are also given for comparison.

Table S8 Summary of oxygen reduction reaction (ORR) activity obtained on carbon black electrocatalysts prepared with different precursors of heteroatoms: potential needed to achieve a current density of 0.1 mA cm⁻² ($E_{0.1}$), onset potential (E_{onset}), half-wave potential ($E_{1/2}$), limiting current density (J_L), the % of hydrogen peroxide (H_2O_2) formed, the number of electrons transferred (n_e), and stability^a.

Sample	<i>E</i> _{0.1} / V	E _{onset} / V	<i>E</i> _{1/2} / V	J _L ^b / mA cm ⁻²	H ₂ O ₂ ¢/ %	n _e c	Stability ^d /%
Fe-N@BP	0.973	0.917	0.852	4.361	4.9	3.90	90.7
Fe-N _{Urea} @BP	0.960	0.902	0.852	4.192	4.0	3.92	81.3
Fe-N-S _{Thiourea} @BP	0.943	0.917	0.867	4.315	5.8	3.89	79.3
Pt/C	0.985	0.882	0.847	4.657	2.2	3.96	98.0

^a All data refers to experiments performed at 1600 rpm; ^b Calculated at 0.15 V vs. RHE; ^c Calculated at 0.4 V vs. RHE; ^d Calculated after 24 h at 0.4 V vs. RHE.

Figure S13 N_2 adsorption-desorption isotherms measured at -196 °C on the carbon black electrocatalysts prepared to study the effect of the Fe load.

Table S9 Summary of the textural properties of carbon black electrocatalysts prepared to study the effect of the Fe load: specific surface area (S_{BET}), micropore volume (V_{micro}), total pore volume (V_{total}), and V_{micro} / V_{total} ratio determined from the N₂ adsorption-desorption isotherms given in Figure S13.

Sample	S _{BET} / m ² g ⁻¹	V _{micro} / cm ³ g ⁻¹	V _{total} / cm ³ g ⁻¹	V _{micro} / V _{total}
BP	1550	0.480	2.641	0.182
Fe-N@BP	1075	0.348	1.822	0.191
Fe _{0.06} -N@BP	1103	0.352	1.934	0.182
Fe _{0.03} -N@BP	1174	0.372	1.967	0.189
Fe _{0.06, low G} -N@BP	1534	0.468	2.612	0.179

Figure S14 Pore size distributions of the carbon black electrocatalysts prepared to study the effect of the Fe load, as determined from the N_2 adsorption isotherms given in Figure S13.

Figure S15 Thermogravimetric analysis (TGA) results collected in an air atmosphere of the carbon black electrocatalysts prepared to study the effect of the Fe load.

Sample	Ashes/ wt.%	Bulk Fe/ wt.%
BP	< 0.1	-
Fe-N@BP	11.5	8.0
Fe _{0.06} -N@BP	5.3	3.7
Fe _{0.03} -N @BP	1.7	1.2
Fe _{0.06, low G} -N@BP	4.4	3.1

Table S10 Ash and Fe contents of the carbon black electrocatalysts prepared to study the effect of Fe load, as determined by the thermogravimetric analysis (TGA).

Figure S16 Detailed core energy level spectra of the (a, b) C 1s, (c, d) O 1s, (e, f) N 1s, and (g, h) Fe $2p_{3/2}$ regions of (a, c, e, g) Fe_{0.06}-N@BP, (b, d, f, h) and Fe_{0.06}, low G-N@BP. N6, N5, NQ, and NO represent N-pyridinic, N-pyrrolic, N-quaternary, and N-oxidized species, respectively.

Sample -	Surface concentration/ at.%				Su	Surface concentration/ wt.%			
	с	ο	N	Fe	С	0	N	Fe	
Fe-N@BP	94.4	3.9	1.4	0.3	91.9	5.0	1.6	1.5	
Fe _{0.06} -N@BP	93.8	3.3	2.8	0.1	91.9	4.3	3.2	0.6	
Fe _{0.06, low G} -N@BP	93.2	6.3	0.4	0.1	90.9	8.2	0.4	0.5	

Table S11 Surface concentrations of C, O, N, and Fe determined from the X-ray photoelectron spectroscopy (XPS) analysis of the carbon black electrocatalysts prepared with different amounts of glucose.

Figure S17 X-ray diffraction (XRD) patterns of Fe_{0.06}-N@BP, BP, sample holder (blank) in the absence of sample, and standard reference pattern of magnetite (crystallography open database code: 9005840).

Figure S18 Transmission electron microscopy (TEM) image of Fe_{0.06}-N@BP.

Figure S19 Overlapping of N and Fe energy-dispersive X-ray spectroscopy (EDS) elemental maps of Fe_{0.06}-N@BP.

	Catalyst		ORR		
Authors	Description	Synthesis precursors	Operating conditions	Activity	Stability
This study	Carbon black enriched with Fe-N-C active sites <u>3 synthesis steps</u> : impregnation with iron and glucose; impregnation with melamine; thermal treatment at 800 °C	Carbon black (Black Pearls 2000, Cabot), iron (II) acetate, glucose, and melamine	Catalyst load = 0.25 mg cm ⁻² Sweep rate = 5 mV s ⁻¹ Rotation speed = 1600 rpm	$E_{1/2} = 0.83 \text{ V}$ $J_{\text{L}} = 4.8 \text{ mA cm}^{-2}$ $n_{\text{e}} = 3.97$	4% loss of <i>J</i> after 24 h at 0.4 V <i>vs</i> . RHE
Cui et al.4	Zeolitic imidazolate framework (ZIF) derived carbon enriched with Fe-N-C active sites <u>4 synthesis steps</u> : preparation of Fe-containing ZIF; impregnation with trithiocyanuric acid; thermal treatment at 900 °C; acidic washing	2-methylimidazole, zinc(II) nitrate, methanol, and iron(III) acetylacetonate	Catalyst load = 0.20 mg cm ⁻² Sweep rate = 10 mV s ⁻¹ Rotation speed = 1600 rpm	$E_{1/2} = 0.87 \text{ V}$ $J_{\text{L}^{\text{b}}} \approx 6 \text{ mA cm}^{-2}$ $n_{\text{e}} \text{ not reported}$	Not reported
Bai <i>et al</i> .5	ZIF derived carbon doped with iron phthalocyanine <u>5 synthesis steps</u> : thermal polycondensation at 550 °C; preparation of ZIF; thermal treatment at 900 °C; impregnation with iron phthalocyanine; thermal treatment at 900 °C	2-methylimidazole, zinc(II) nitrate, urea, cyanoguanidine, methanol, iron phthalocyanine, isopropyl alcohol	Catalyst load = 0.40 mg cm ⁻² Sweep rate = 5 mV s ⁻¹ Rotation speed = 1600 rpm	$E_{1/2} = 0.92 \text{ V}$ $J_{L} = 5.5 \text{ mA cm}^{-2}$ $n_{e} = 3.94$	E _{1/2} loss of 9 mV after 5000 LSV cycles
Mazzucato and Durante ⁶	Carbon black enriched with Fe-N-C active sites <u>8 synthesis steps</u> : synthesis of tris-1,10-phenanthroline iron(II) chloride; ball milling; thermal treatment at 900 °C; ball milling; acidic washing; ball milling; thermal treatment at 900 °C; ball milling	Carbon black (XC72, Vulcan), 1,10-phenanthroline, iron(II) chloride, ethanol, diethyl ether, sulfuric acid	Catalyst load = 0.80 mg cm ⁻² Sweep rate = 2 mV s ⁻¹ Rotation speed = 1600 rpm	$E_{1/2} = 0.75 \text{ V}$ $J_{L^{b}} \approx 5.5 \text{ mA cm}^{-2}$ $n_{e} \text{ not reported}$	$E_{1/2}$ loss of 2 mV and 9% loss of J at 0.6 V after 7000 LSV cycles
Zhang et al. ⁷	ZIF derived carbon enriched with Fe-N-C active sites <u>4 synthesis steps</u> : preparation of ZIF; impregnation with silica, iron, and sodium acetate; thermal treatment at 900 °C; acidic washing	2-methylimidazole, zinc(II) nitrate, iron(III) chloride, methanol, silica, sodium acetate	Catalyst load = 0.50 mg cm ⁻² Sweep rate = 10 mV s ⁻¹ Rotation speed = 1600 rpm	$E_{1/2} = 0.84 \text{ V}$ $J_{\text{L}}^{\text{b}} \approx 7 \text{ mA cm}^{-2}$ $n_{\text{e}} = 3.90$	Not reported; Negligible losses after 6000 CV cycles at 50 mV s ⁻¹
Sun et al. ⁸	Polyimide derived carbon doped with iron phthalocyanine <u>5 synthesis steps</u> : Solvothermal synthesis of polyimide at 180 °C; thermal treatment at 900 °C; gas-phase functionalization with ammonia; impregnation with iron phthalocyanine; solvothermal treatment at 200 °C	Benzidine, ethanol, 3,3',4,4' - benzophenone tetracarboxylic dianhydride, ammonia, N, N- dimethylformamide, iron phthalocyanine	Catalyst load = 0.25 mg cm ⁻² Sweep rate = 5 mV s ⁻¹ Rotation speed = 1600 rpm	$E_{1/2} = 0.90 \text{ V}$ $J_{\text{L}^{\text{b}}} \approx 5.5 \text{ mA cm}^{-2}$ $n_{\text{e}} \text{ not reported}$	9% loss of <i>J</i> after 10 h at 0.6 V

 Table S12 10 latest studies reporting oxygen reduction reaction on carbon materials enriched with Fe-N-C active sites^a.

^a Data collected from Scopus on July 29, 2023, using the following query: "(TITLE-ABS-KEY (oxygen AND reduction AND reaction) AND TITLE-ABS-KEY (fe-n-c))". The titles and abstracts of those articles were screened for relevance. The 10 latest studies carried out in basic media (0.1 mol L⁻¹ KOH) and accessible by University of Porto were selected for full-text reading and data analysis/collection; ^b Approximate value collected from a Figure in the original publication (exact value not reported).

Authors	Catalyst			ORR	
	Description	Synthesis precursors	Operating conditions	Activity	Stability
Wang et al.9	Pyrrole derived carbon enriched with Fe-N-C active sites	Pyrrole monomer, methyl	Catalyst load = 0.60 mg cm ⁻²	$E_{1/2} = 0.85 \text{ V}$	$E_{1/2}$ loss of 7 mV
	4 synthesis steps: Impregnation of carbon precursors with iron;	orange, iron(III) chloride,	Sweep rate not reported	$J_{\rm L}^{\rm b} \approx 5.4 \text{ mA cm}^{-2}$	after 5000 CV
	freeze-drying; thermal treatment at 900 °C; acidic washing	sulfuric acid	Rotation speed not reported	<i>n</i> _e = 3.96	cycles (scan rate
					not reported)
Xu <i>et al.</i> ¹⁰	ZIF derived carbon enriched with Fe-N-C active sites	Cetyltrimethylammonium	Catalyst load = 0.46 mg cm ⁻²	$E_{1/2} = 0.90 \text{ V}$	$E_{1/2}$ loss of 6 mV
	2 synthesis steps: preparation of Fe-containing ZIF; thermal	bromide, zinc(II) nitrate, iron(II)	Sweep rate not reported	J _L ^b ≈ 6 mA cm ⁻²	after 5000 LSV
	treatment at 910 °C	chloride, 2-methylimidazole	Rotation speed not reported	$n_{\rm e}{}^{\rm b} \approx 4$	cycles
Shen <i>et al.</i> ¹¹	Zinc-adenine derived carbon enriched with Fe-N-C active sites	Zinc(II) nitrate, iron(II) acetate,	Catalyst load = 0.40 mg cm ⁻²	$E_{1/2} = 0.87 \text{ V}$	6.3% loss of J after
	2 synthesis steps: Preparation of Fe-containing zinc-adenine	N, N-dimethylformamide,	Sweep rate = 10 mV s ⁻¹	$J_{L^{b}} \approx 5.5 \text{ mA cm}^{-2}$	20 h at an
	precursor; thermal treatment at 1000 °C	adenine	Rotation speed = 1600 rpm	n _e = 3.96	unreported fixed
					potential
Wang et al. ¹²	Fullerene doped with iron tetraphenylporphyrin	Toluene, fullerene,	Catalyst load = 1.00 mg cm ⁻²	$E_{1/2} = 0.88 \text{ V}$	≈15% loss of J ^b
	3 synthesis steps: Preparation of iron tetraphenylporphyrin;	tetraphenylporphyrin, iron(III)	Sweep rate = 10 mV s ⁻¹	$J_{\rm L}^{\rm b} \approx 5.5 \text{ mA cm}^{-2}$	after 28 h at 0.6 V
	impregnation of fullerene through liquid-liquid interfacial	nitrate, propanol	Rotation speed = 1600 rpm	$n_{\rm e}{}^{\rm b} \approx 4$	vs. RHE
	precipitation; thermal treatment at 700 °C				
Li et al.13	Carbonate derived carbon enriched with Fe-N-C active sites	Magnesium carbonate basic,	Catalyst load = 0.25 mg cm ⁻²	$E_{1/2} = 0.87 \text{ V}$	10% loss of J after
	4 synthesis steps: Impregnation of carbon and nitrogen precursors	ethanol, EDTA, iron(III) nitrate,	Sweep rate = 10 mV s ⁻¹	$J_{\rm L}^{\rm b} \approx 5.6 \mathrm{mA} \mathrm{cm}^{-2}$	3.3 h at an
	with iron; hand milling; thermal treatment at 900 $^{\rm o}{\rm C}$; acidic washing	hydrochloric acid	Rotation speed = 1600 rpm	n _e = 3.94	unreported fixed

 Table S12 10 latest studies reporting oxygen reduction reaction on carbon materials enriched with Fe-N-C active sites^a (cont).

^a Data collected from Scopus on July 29, 2023, using the following query: "(TITLE-ABS-KEY (oxygen AND reduction AND reaction) AND TITLE-ABS-KEY (fe-n-c))". The titles and abstracts of those articles were screened for relevance. The 10 latest studies carried out in basic media (0.1 mol L⁻¹ KOH) and accessible by University of Porto were selected for full-text reading and data analysis/collection; ^b Approximate value collected from a Figure in the original publication (exact value not reported).

References

- 1. J. Jagiello and J. P. Olivier, Adsorption, 2013, 19, 777-783.
- 2. G. de Falco, M. Florent, A. De Rosa and T. J. Bandosz, J. Colloid Interface Sci., 2021, 586, 597-600.
- 3. X. Ge, A. Sumboja, D. Wuu, T. An, B. Li, F. W. T. Goh, T. S. A. Hor, Y. Zong and Z. Liu, ACS Catal., 2015, 5, 4643-4667.
- 4. L. Cui, J. Hao, Y. Zhang, X. Kang, J. Zhang, X.-Z. Fu and J.-L. Luo, J. Colloid Interface Sci., 2023, 650, 603-612.
- 5. J. Bai, Y. Tang, C. Lin, X. Jiang, C. Zhang, H. Qin, Q. Zhou, M. Xiang, Y. Lian and Y. Deng, J. Colloid Interface Sci., 2023, 648, 440-447.
- 6. M. Mazzucato and C. Durante, *Electrochim. Acta*, 2023, **463**, 142801.
- 7. J. Zhang, Y. Chen, M. Tian, T. Yang, F. Zhang, G. Jia and X. Liu, Chin. Chem. Lett., 2023, 34, 107886.
- 8. Q. Sun, Z. Wang, M. Zhou, J. Li, R. Lu, Y. Wang, X. Liao and Y. Zhao, Appl. Surf. Sci., 2023, 624, 157154.
- 9. M. Wang, L. Wang, Q. Li, D. Wang, L. Yang, Y. Han, Y. Ren, G. Tian, X. Zheng, M. Ji, C. Zhu, L. Peng and G. I. N. Waterhouse, Small, 2023, 19, 2300373.
- 10. H. Xu, L. Xiao, P. Yang, X. Lu, L. Liu, D. Wang, J. Zhang and M. An, J. Colloid Interface Sci., 2023, 638, 242-251.
- 11. M. Shen, J. Liu, J. Li, C. Duan, C. Xiong, W. Zhao, L. Dai, Q. Wang, H. Yang and Y. Ni, *Energy Storage Mater.*, 2023, 59, 102790.
- 12. H. Wang, L. Cao, Y. Feng, J. Chen, W. Feng, T. Luo, Y. Hu, C. Yuan, Y. Zhao, Y. Zhao, K. Kajiyoshi, Y. Liu, Z. Li and J. Huang, *Chin. Chem. Lett.*, 2023, **34**, 107601.
- 13. S. Li, Y. Lv, S. Elam, X. Zhang, Z. Yang, X. Wu and J. Guo, *Molecules*, 2023, **28**, 2879.