Supplemental Files

Engineering the crystal facets of α-MnO₂ nanorods for electrochemical energy storage: experiment and theory

Yifan Wang^{a, b#}, Zhengwei Lu^{a, b#}, Peipei Wen^{a, b}, Yinyan Gong^{a, b},

Can Li ^{a, b}, Lengyuan Niu^{* a, b}, Shiqing Xu ^{a, b}

^a Key Laboratory of Rare Earth Optoelectronic Materials and Devices of Zhejiang Province, China Jiliang University, Hangzhou 310020, Zhejiang, China

^b College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310020,

Zhejiang, China

[#] These authors contributed equally to this work.

^{*} Corresponding authors, E-mail: <u>niulengyuan@163.com</u>

Fax: +86-571-86872363, Tel.: +86-571-86872363.

1. The EDS results of α-MnO₂

The EDS was used to analyze the elemental composition of the as-prepared samples. The weight percent of Mn, O and K (deduct the C element) is shown in **Table S1**. The Mn and O content is nearly close, which is in accordance with the XPS results and further indicates the successful preparation of MnO₂.

Samples	Mn	0	К
α-MnO ₂ -200	68.85	24.94	6.14
α-MnO ₂ -110	71.84	22.23	5.92
α-MnO ₂ -310	69.86	21.82	8.32

Table S1 The weight percent (%) of Mn, O and K for α-MnO₂ based on EDS results.

2. The effect of KOH concentrations on the electrochemical performance of a-MnO2-310

KOH was applied as an alkaline etchant to improve the electrochemical performance of α -MnO₂-310. **Fig.S1a** shows the CV curves of as-prepared α -MnO₂-310 at the scan rate of 10 mV/s. Compared to α -MnO₂-310 treated with other concentrations of KOH, the α -MnO₂-310 after 4 M KOH treatment displays the larger area and broader region. The GCD curves of α -MnO₂-310 with different concentrations of KOH at 0.5 A/g are depicted in **Fig. S1b**. Among, the α -MnO₂-310 treated with 4 M KOH displays the highest specific capacitance of 133 F/g, which is better than their counterparts in terms of specific capacitance values. Thus, we finally choose 4 M as the optimum concentration for the treatment of α -MnO₂-310.

Fig. S1 Electrochemical properties of as-prepared α -MnO₂-310 treated with different concentrations of KOH: (a)

CV curves at a scan rate of 10 mV/s, (b) GCD curves at 0.5 A/g.

3. The electrochemical performances in the two-electrode case

In order to further explore the practical application of as-prepared α -MnO₂, the electrochemical performances in the two-electrode case were evaluated, while using the α -MnO₂-310 as the positive electrode, the activated carbon (AC) as the negative electrode, and 0.5 M Na₂SO₄ as electrolyte. **Fig.S2a** shows the CV curves of MnO₂//AC assymmetric supercapacitor at different scan rates. It can be seen that all the CV curves exhibit a quasi-rectangular shaped capacitive behavior, which indicate the good reversibility and pseudocapacitive behavior. Meanwhile, the GCD curves with the current densities from 0.5 A g⁻¹ to 5 A g⁻¹ (**Fig.S2b**) show a symmetrical triangle shape, indicating that the assembled asymmetric supercapacitor has excellent reversibility and high coulombic efficiency. The calculated specific capacitance was 29.17 F/g at a current density of 0.5 A g⁻¹. Besides, the capacity retention ratio was 47.14% when the current density increasing to 5 A g⁻¹ (**Fig.S2c**). The energy density can reach 5.83 Wh kg⁻¹ at a power density of 300 W kg⁻¹, which is better than the commercial AC//AC symmetric supercapacitors (**Fig.S2d**).¹⁻³

Fig. S2 Electrochemical properties of MnO₂//AC assymmetric supercapacitor: (a) CV curves at different scan rates,
(b) GCD curves at different current densities, (c) the calculated specific capacity at various current densities and (d)

Ragone plots.

References

- M. Wang, J. Yang, K. Jia, S. Liu, C. Hu and J. Qiu, Chemistry A European Journal, 2020, 26, 2897-2903.
- Z. Fang, L. Cao, F. Lai, D. Kong, X. Du, H. Lin, Z. Lin, P. Zhang and W. Li, Composites Science and Technology, 2019, 183.
- J. Hao, X. Wang, Y. Wang, X. Lai, Q. Guo, J. Zhao, Y. Yang and Y. Li, Nanoscale Advances, 2020, 2, 878-887.